Altro che LHC ! SNRs i veri acceleratori Galattici

Andrea Giuliani

Istituto Astrofisica Spaziale e Fisica Cosmica, Milano (INAF)

Summary of the Presentation

- SNR, CR and γ-rays
- AGILE SNRs

-IC 443 -W 28

3 phases in SNR's life

1) Free expansion (less than 200-300 years)

2) Adiabatic or "Taylor-Sedov" phase(about 20 000 - 40 000 years)

3) Radiative or Snow-plow phase (up to 500 000 years)

4) ... and then, merge with the ISM

Sedov-Taylor phase

In Sedov-Taylor model one expects thermal emission coming from a thin shell behind the blast wave.

As the shock expands the pressure drops between the shock wave and the material ejected.

 $R_s = 12.4 \text{ pc} (KE_{51}/n_1)^{1/5} t_4^{2/5}$

At one point, "reverse" shock starts propagating ===> will eventually heat the ejecta (also thermal emission).

Shocks

 Conservation laws: mass, momentum and energy conservation: Use system in which shock is at rest

> $\rho_1 v_1 = \rho_2 v_2$ $(\rho_1 v_1) v_1 + p = (\rho_2 v_2) v_2 + p$ $(1/2\rho_1 v_1^2 + u) v_1 = (1/2\rho_2 v_2^2 + u) v_2$ internal energy u=p/(γ-1), γ=5/3 for monatomic gas

•Simplification: heat sinks (cosmic ray acceleration!), magnetic fields, and radiation losses not taken into account.

•For strong shocks (M $\rightarrow \infty$) one finds: $\rho_2 / \rho_1 = (\gamma + 1)/(\gamma - 1) = 4$, implying $v_2 = 1/4v_s$ $kT_2 = 2(\gamma - 1)(\gamma + 1)^{-2} m v_s^{-2} = 3/16m v_s^{-2}$, with m particle mass

SNRs as accelerators

Shocks

- SNRs accelerate electrons (Radio, X)
- Escape time ~ $E^{0.5 0.6}$
- p and e spectrum at Earth

- Protons are also accelerated ?
- Injection spectrum ?

diffusion coeff D(E) ?

SNRs in gamma-rays

Bright gamma-ray sources:

Inverse Compton : electrons + ISRF photons $\rightarrow \gamma$ rays

Electron Bremsstrahlung: electrons + ISM nuclei $\rightarrow \gamma$ rays

Neutral π decay : protons + ISM nuclei $\rightarrow \pi^{\circ} \rightarrow \gamma$ rays

SNRs in gamma-rays

3 component in the gamma-ray spectrum

The hadronic component peaks @ GeV energies

SNRs in gamma-rays

Gamma Luminosity 10³⁶⁻³⁷ erg/s

No time signature (No variability)

--> Easy to detect, hard to identify !

IC 443 – TeV detection by VERITAS

IC 443 : Optical, X+ 3EG source

IC 443 : Optical, X+ 3EG source

3EG EGRET source (Hartman et al. 1999)

IC 443 : Optical, X+ 3EG source

3EG EGRET source (Hartman et al. 1999)

Magic source

IC 443 seen by AGILE (2008)

Gev Source ≠ TeV Source

A MALE ATTACK AND A MALE AND A MALE

Diffusion of CR in the ISM

$$\frac{\partial f(E,r)}{\partial t} = D(E)\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial f(E,r)}{\partial r} + \frac{\partial}{\partial E}P(E)f(E,r) + Q(E,r)$$

 $R_{diff} = 2\sqrt{Dt}$

Aharonian & Atoyan, A&A, 309, 1996

Diffusion Coef :

 $D(E)=10^{26} (E/10 \text{ GeV})^{0.5} --> t \sim sqrt(E)$

Diffusion of CR in the ISM

t~sqrt(E)

 $D(E)=10^{26} (E/10 \text{ GeV})^{0.5} -->$

IC 443: EGRET vs. MAGIC data

Impulsive vs. continuous injection

Torres et al., MNRAS, 08

Conclusion for IC 443

EGRET detected SNRs (and AGILE can identify them)

GeV and TeV emissions can be displaced

Diffusion in the ISM have to be taken into account

Hadronic scenario is favoured

SNR W 28

- Distance : 2 3 kpc
- Age : > 35 yrs

Size: 20-35 pc (50')

Mixedmorphology SNR

from Aharonian et al. 2008

SNR W 28 : M.Clouds and TeV

from Aharonian et al. 2008

AGILE/GRID Observations E>400 MeV (+HESS contours)

AGILE/GRID Observations HESS signif. map E>400 MeV (+HESS contours) (+ AGILE contours)

AGILE/GRID Observations E>400 MeV

HESS signif. map

(+HESS contours)

(+ AGILE contours)

Model for W 28

- Gamma ray by π^0 decay
- Proton spectrum @ SNR : F~E^{-2.2}
- Diffussion : D=10²⁶ (E/10 GeV)^{0.5}
- Distances of targets: A region : 5 pc B region : 10 pc
- Age of the SNR : 45 kyrs

Giuliani et al. 2009 in prep.

Fermi Observations (preliminar)

E = 500 MeV E = 1.5 GeV E = 5 GeV E = 15 GeV

Conclusion for SNR W 28

- SNRs appear diferent in GeV and TeV band
- It seems to be a common feature (at least for midle age SNRs)
- Gamma observations (GeV+TeV) can give constrains on the CR diffusion coeficient
- Strong indication of an hadronic scenario

Conclusions

- SNRs are finally resolved in the MeV-GeV energy range
- Clear correlation between 100 MeV-GeV emission and shocked Molecular Clouds (IC 443, W 28, RX J1713)
- Apparent flux anticorrelation between 100 MeV -Gev and TeV bands
- GeV and TeV connection is crucial to understand the SNRs physics