(an introduction to)

Double Neutron Star Binaries in X-Rays

A.Pellizzoni - INAF

SEPARATION 2.6882871 s

SEP. at CONJUNCTIONS 3. B25105 (NFA) 2.67281514 (SUP

PULSAR WIND PRESSURE

Most of PSR spin-down energy E_{rot} (10³⁵-10³⁹ erg/s) in pulsar wind ($\gamma = 10^6$)

$$P_{wind}(R) = \frac{E_{rot}}{4 \pi R^2 c}$$

R = Distance from PSR surface

PULSAR WIND PRESSURE

At $\mathcal{R}_{\pm Q}$: shock \rightarrow synchrotron emission (+ IC emission)

Nature/strength of P_{EXTERNAL}? Typical R_{FO} ? $P_{wind}(R) = \frac{E_{rot}}{4 \pi R^2 c}$ oto Distance from PSR surface R =MMM $P_{wind}(R_{EQ}) = P_{external}(R_{EQ})$ R_{EQ} = Equilibrium distance

At \mathcal{R}_{EQ} : shock \rightarrow synchrotron emission (+ IC emission)

P_{EXTERNAL} **possible origins**:

• Ram pressure due to supersonic motion (>10 km/s) of the NS in the ISM

• Supernova Remnant cold ejecta: static Pulsar Wind Nebulae/plerions (e.g. Crab)

• Outflow from a stellar companion (e.g. PSRB1259-63 + Be star, PSRB1957+20 + white dwarf)

• Wind/magnetosphere pressure of a companion NS (DNSB)

Ram pressure due to supersonic motion of the NS (>10 km/s) in the ISM (optical)

"Comet-shaped" bow-shocks: High pulsar velocity in the Interstellar Medium Ram pressure due to supersonic motion of the NS (>10 km/s) in the ISM (X-rays)

SNR cold ejecta pressure: static Pulsar Wind Nebulae/plerions

BINARY PULSAR

Wind/magnetosp.pre ssure of a companion NS:

P_{EXTERNAL} possible origins and typical **R**_{EQ}:

• Ram pressure due to supersonic motion (>10 km/s) of the NS in the ISM $\Rightarrow R_{EQ} = 10^6 - 10^{10} R_{LC}$

• Supernova Remnant cold ejecta: static Pulsar Wind Nebulae/plerions (e.g. Crab)

 $\rightarrow R_{EQ} = 10^{\circ} - 10^{\circ} R_{LC}$

• Outflow from a stellar companion (e.g. PSR B1259-63 + Be star, PSR B1957+20 + white dwarf)

• Wind/magnetosphere pressure of a companion NS (DNSB)

$$\rightarrow R_{EQ} = 10-10^3 R_{LC}$$

PSR wind magnetization parameter:

σ=Poynting flux/kinetic energy

 $\sigma(\mathcal{R})$ dependences on pulsar distance

 $\mathbf{O} << 1$ for $\mathcal{R}_{\mathcal{EQ}} = 10^{\circ}$ Rlc as in Crab-like PWN

 $\mathbf{O} >> 1??$ for $\mathcal{R}_{\mathcal{E}Q} < 10^3$ Rlc as for DNSB as 0737

Shock efficiency prop to 1/sqrt(**O**), Kennel & Coroniti (1984)

Double Neutron Star Binaries (DNSB), a unique laboratory for studies in several fields:

Pulsar wind structure and magnetosphere close to PSR surface:

• PSRs wind/magnetosphere shock \rightarrow synchrotron emission (+ IC emission) $\rightarrow X$ -rays/ γ -rays

•PSRs mutual interactions/absorption

Double Neutron Star Binaries (DNSB)

Table 1: Firmly identified double neutron star binaries. Listed are the spin-down energy E_{rot} , distance d, pulsar period P and period derivative \dot{P} , E_{rot}/d^2 , observed or estimated X-ray fluxes F, orbital period P_{orb} and eccentricity e.

2	J0737-3039	J1537+1155	J1756-2251	J1915+1606	J2130+1210C
$E_{rot}(10^{33} ergs \ s^{-1})$	5.8	1.8	1.7	1.6	6.8
d (kpc)	0.5	1.0	2.5	7.0	10
P(ms)	22.7(PSR A)	37.9	28.5	59.0	30.5
$\dot{P}(10^{-18})$	1.74	2.42	1.01	8.60	4.99
$E_{rct}/d^2 (10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1})$	24	1.9	0.28	0.03	0.07
$F_{0,2-3keV}^{(a)}$ (10 ⁻¹⁵ erg cm ⁻² s ⁻¹)	35	2.4	0.7 7(b)	0.08 7 ^(b)	0.2 7 ^(b)
Porb (days)	0.102	0.421	0.32	0.3	0.3
e	0.0877	0.274	0.18	0.62	0.68

^a X-ray flux in the 0.2-3 keV range.

^b Extimated X-ray flux assuming $L_X = 3 \times 10^{-4} E_{rot}$.

Double Neutron Star Binaries (DNSB)

Table 1: Firmly identified double neutron star binaries. Listed are the spin-down energy E_{rot} , distance d, pulsar period P and period derivative \dot{P} , E_{rot}/d^2 , observed or estimated X-ray fluxes F, orbital period P_{orb} and eccentricity e.

2	J0737-3039	J1537+1155	J1756-2251	J1915+1606	J2130+1210C
$E_{rot}(10^{33} ergs \ s^{-1})$	5.8	1.8	1.7	1.6	6.8
d (kpc)	0.5	1.0	2.5	7.0	10
P(ms)	22.7(PSR A)	37.9	28.5	59.0	30.5
$\dot{P}(10^{-18})$	1.74	2.42	1.01	8.60	4.99
$E_{rct}/d^2 (10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1})$	24	1.9	0.28	0.03	0.07
$F_{0,2-3keV}^{(a)}$ (10 ⁻¹⁵ erg cm ⁻² s ⁻¹)	35	2.4	0.7 7(b)	0.08 7 ^(b)	0.2 7 ^(b)
Porb (days)	0.102	0.421	0.32	0.3	0.3
e	0.0877	0.274	0.18	0.62	0.68

^a X-ray flux in the 0.2-3 keV range.

^b Extimated X-ray flux assuming $L_X = 3 \times 10^{-4} E_{rot}$.

PSR J0737-3039: highest $E_{_{\!ROT}}/d^2$ and shortest orbital period

WHERE DO X-RAYS COME FROM?

The engine providing power via spin-down is $PSRA's E_{ROT}$

(PSR B is too slow to contribute)

No other comparable power plants in the system

•Emission originating from magnetosphere and surface of PSR A ("Normal" ms PSR model)

•Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM (**PWN model**)

•Synchrotron emission from the bow-shock formed near pulsar B owing to the collision between A's relativistic wind and B's magnetosphere (magnetosheath model)

•Thermal emission from PSR B heated by A through magnetospheric absorption (**PSR B** "illumination model")

Emission originating from magnetosphere and surface of PSR A ("Normal" ms PSR model)

•Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM

•Synchrotron emission from the bow-shock formed near pulsar B owing to the collision between A's relativistic wind and B's magnetosphere

•Thermal emission from PSR B heated by A through magnetospheric absorption

Emission originating from magnetosphere and surface of PSR A:

Emission originating from magnetosphere and surface of PSR A:

ms PSRs classification (e.g. Zavlin, 2006):

High-luminosity (E_{ROT} >10³⁵ erg/s) fast (P<3 ms) ms PSRs:

non-thermal emission (2< γ <2.5), pulsed fraction (65%-100%), narrow pulses

Low-luminosity ($10^{32} < \mathcal{E}_{ROT} < 10^{33} \text{ erg/s}$) ms PSRs:

thermal BBs from PCs, pulsed fraction (35%-50%), broad pulses

Both classes: L_x=10⁻⁴-10⁻³ E_{ROT}

WHERE DO X-RAYS COME FROM?

 \bullet Emission originating from magnetosphere and surface of PSR A

•Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM (PWN model)

•Synchrotron emission from the bow-shock formed near pulsar B owing to the collision between A's relativistic wind and B's magnetosphere

•Thermal emission from PSR B heated by A through magnetospheric absorption

Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM (Granot & Meszaros, 2004)

Emission from the interaction of the two pulsars is lower ($<10^{29}$ erg/s) than that expected from the interaction of pulsar A's wind alone with the ISM:

Power-law spectrum up to 60 keV: $L_x = 7x10^{29} \text{ erg/s} = 10^4 E_{ROT} \text{ erg/s}$

Shock at $\mathcal{R}_{\pm Q} = 5\chi 10^{15}$ cm, very far from PSR A

PSR/bow-shock angular separation < 1 arcsec

3D pulsar/ISM bow-shock model

shock simulator v1.0 NS/15M 50 Ω _50 -100 ر ب ~<u>~</u>~ .00 A.Pellizzoni IASE-CNR 1/10/2003

proper motion inclination angle and bow-shock stand-off angle can be obtained from the fit of the 3d model

WHERE DO X-RAYS COME FROM?

 $\bullet {\it Emission originating from magnetosphere and surface of PSRA$

•Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM

•Synchrotron emission from the bow-shock formed near pulsar B owing to the collision between A's relativistic wind and B's magnetosphere (magnetosheath model)

•Thermal emission from PSR B heated by A through magnetospheric absorption

 $\mathcal{P}_{EXTERNAL}(\mathcal{R})$? PSR B wind or PSR B magnetosphere pressure?

Similar to the interaction between the Earth and the solar wind

Wind pressure (PSR A)=magnetic pressure (PSR B) at \mathcal{R}_{EO} =0.2 lt-s from B

Wind pressure (PSR A)=magnetic pressure (PSR B) at \mathcal{R}_{EQ} =0.2 lt-s from B

 $E_{shock} > E_{ROT} \Omega/4\pi = 10^{31} \text{ erg/s} = 10^{-2} \cdot 10^{-3} E_{ROT} \text{ erg/s}$

Shock properties inferred from radio observations (eclipses of PSR A): [Arons 2004; Lyutikov, 2004]

Synchrotron absorption in the magnetosheath forming when A's relativistic wind impacts B's magnetosphere

Magnetic field = few Gauss

Lorentz factor of shocked particles < 100 (it "should be" 10⁶ !)

Particle density $>=10^4$ cm⁻³ (it "should be" 1 cm⁻³ !)

wind magnetization parameter: σ <= 1

Synchrotron absorption in the magnetosheath forming when A's relativistic wind impacts B's magnetosphere

Magnetic field <= few Gauss

B=3 sqrt($\sigma/(1+\sigma)$) x sqrt(2L/cD²) <= 21 G (Kennel & Coroniti, 1994)

Lorentz factor of shocked particles < 100 (it "should be" 10⁶ !) $\gamma = sqrt(N_{OBS}/N_{B}) = sqrt(GHz/MHz) = 30$

Particle density $>=10^4$ cm⁻³ (it "should be" 1 cm⁻³ !)

In order to produce an optical depth >=1 a GHz

wind magnetization parameter: $\sigma \ll 1$

Shock properties inferred from radio observations (eclipses of PSR A and bright phases of PSR B):

www.physics.mcgill.ca/-ransom/0737_Bflux_model.mpg

PSR B strongly detected in two orbital phase ranges of 10 min each

Double neutron star system 0737-3039

PSR B strongly detected in two orbital phase ranges of 10 min each

Double neutron star system 0737-

Double neutron star system 0737-3039

PSR B strongly detected in two orbital phase ranges of 10 min each

Double neutron star system 0737-3039

PSR B strongly detected in two orbital phase ranges of 10 min each

3039

Double neutron star system 0737-

Double neutron star system 0737-

Double neutron star system 0737-

Double neutron star system 0737-

Double neutron star system 0737-3039

Double neutron star system 0737-

Double neutron star system 0737-3039

PSR B strongly detected in two orbital phase ranges of 10 min each

Double neutron star system 0737-

Double neutron star system 0737-

Double neutron star system 0737-

Single pulses from PSR B show features drifting at the beat frequency between the periods of the two pulsars reflecting the direct impact of electromagnetic radiation from A on B (McLaughlin, 2004).... Then...

Most of the spin-down energy seems to be carried by the poyinting flux rather than by energetic particles:

σ>1

Lyutikov 2005

Rafikov & Goldreich 2005

Synchrotron absorption causing PSR A eclipses is occurring within the magnetosphere of pulsar B not in the magnetosheath

Synchrotron absorption in the magnetosheath forming when A's relativistic wind impacts B's magnetosphere

Magnetic field <= few Gauss

B=3 sqrt($\sigma/(1+\sigma)$) x sqrt(2L/cD²) <= 21 G (Kennel & Coroniti, 1994)

Lorentz factor of shocked particles < 100 (it "should be" 10⁶ !)

 $\gamma = sqrt(\mathcal{N}_{OBS}/\mathcal{N}_{B}) = sqrt(GHz/MHz) = 30$

Particle density $>=10^4$ cm⁻³ (it "should be" 1 cm⁻³ !)

In order to produce an optical depth >=1 a GHz

wind magnetization parameter: $\sigma \ll 1$

WHERE DO X-RAYS COME FROM?

 \bullet Emission originating from magnetosphere and surface of PSR A

•Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM

•Synchrotron emission from the bow-shock formed near pulsar B owing to the collision between A's relativistic wind and B's magnetosphere

•Thermal emission from PSR B heated by A through magnetospheric absorption (PSR B "illumination model")

Thermal emission from PSR B heated by A through magnetospheric absorption (Zhang &Loeb, 2004)

Part of PSR A's wind energy is absorbed by B's magnetosphere and driven towards B surface:

Pairs from A's wind flow into the open field line region of B and lose energy via curvature radiation and $IC \rightarrow \gamma$ -rays heating polar cap region

Energy input 10^{31} erg/s transferred with an efficiency >=10% at PSR B's surface

 \rightarrow thermal emission $L_x=10^{30} \text{ erg/s} = 10^4 - 10^3 E_{ROT} \text{ erg/s} (kT = 0.2 \text{ keV})$

© Mark A. Garlick / space-art.co.uk

Pairs from A's wind flow into the open field line region of B and lose energy via curvature radiation and $IC \rightarrow$ γ -rays heating polar cap region

COMPOSITE SCENARIO?

• Emission originating from magnetosphere and surface of PSR A ($L_X = 10^4 - 10^3 E_{ROT}$)

•Synchrotron emission from the bow-shock formed near pulsar B owing to the collision between A's relativistic wind and B's magnetosphere ($L_X < 10^2 - 10^3 E_{ROT}$)

•Synchrotron emission from PSR A wind just behind the bow-shock caused by the systemic motion in the ISM $(L_x=10^4 E_{ROT})$

•Thermal emission from PSR B heated by A through magnetospheric absorption ($L_{\chi}=10^{-4}-10^{-3} E_{ROT}$)

X-RAYS OBSERVATIONS OF THE DOUBLE PULSAR

McLaughlin et al., 2004 (Chandra/ACIS-S, 10 ks, 1 orbit):

No significant orbital variability

First detection of a DBNS in X-rays, 80 source photons

WHERE DO X-RAYS COME FROM?

No significant emission from the interaction between PSR A wind and PSR B magnetosphere:

PSR A wind magnetization parameter $\sigma > 100$ (in agreement with most of wind models)

But...

We can further constrain interaction parameters and structure (magnetic field, electrons Lorentz factor, σ ...) analyzing scattering/absorption process of PSR A X-ray flux by the magnetosheath...

Which kind of scattering/absorption processes?

Synchrotron absorption?

Compton scattering?

Which size for the absorber nebula?

© Mark A. Garlick / space-art.co.uk

Pairs from A's wind flow into the open field line region of B and lose energy via curvature radiation and $IC \rightarrow$ γ -rays heating polar cap region

LONGITUDE OF PERIASTRON [deg] (off-set from radio obs: 0.0 -> omega=67.0331 deg, pmegadot=16.89947 deg/yr, epoch=53155.9074280 MJD)

