2 YEARS ANALYSIS OF GEMINGA WITH FERMI-LAT

ANGELICA SARTORI University of Pavia

FERMI SPACECRAFT

- 2008, June 11
 Cape Canaveral
- LAT: 20 MeV-300 GeV

LAT vs EGRET

- Effective area: 6 times better
- Sensitivity: 50 times higher
- Angular resolution: 3 times better
- Much better energetic resolution
- Observed sources: 2233 vs 271
- Observed pulsars: >80 vs 7

FERMI PULSARS

- Gamma-rays efficiency: 10 %
- Radio efficiency: 10⁻⁷-10⁻⁶
- 2 populations of non-recycled rotation-powered pulsars: radio-loud and radio-quiet

Spectral shape: power law + exp. Cutoff
Cutoff energy: 1-5 GeV

Gamma-rays emission from the outer magnetosphere

PERFORMED ANALYSIS

- Study of the light curve in different energy ranges
- Phase-averaged spectral analysis
- Phase-resolved spectral analysis
- Search for a pulsar wind nebula (PWN)

PEAKS ASIMMETRY

LC EVOLUTION WITH ENERGY

LC EVOLUTION WITH ENERGY

SPECTRAL ANALYSIS

- 10° region of interest (ROI)
- 20° source region
- Non-pulsar sources: power law
- Pulsar sources: power law + exp cutoff
- Spectral parameters fixed except normalizations (1FGL, 1st psr catalogue)
- Maximum likelihood method
- Different models tested for Geminga:
 - Power law
 - Power law + exponential cutoff
 - Power law + super exponential cutoff

PHASE-AVERAGED SPECTROSCOPY

CONSTRAINTS ON EMISSION MODEL

- Absence of radio emission
- Geometrical constraints from the X-rays
- $r \ge (\varepsilon_{max} B_{12}/1.76 \text{ GeV})^{2/7} P^{-1/7} R_*$ MAGNETOSPHERE $\varepsilon_{max} \sim 18 \text{ GeV} \longrightarrow r_{min} \ge 2.7 R_*$

EMISSION FROM THE OUTER MAGNETOSPHERE

 $L_{\gamma} = 4\pi f_{\Omega} F_{obs} D^{2}$ D ~250 pc, $F_{obs} \sim 4.1 \cdot 10^{-9} \text{ erg s}^{-1} \text{ cm}^{-2}$ $f_{\Omega} \sim 0.1 - 0.15$ (OG model)

 $L_v = 4.6 \cdot 10^{33} \,\mathrm{erg \, s^{-1}}$

PHASE-RESOLVED SPECTROSCOPY

- 35 bins, 4031 counts each
- Power law + exp cutoff
- Emission from the pulsar in each bin
- Big variations of the spectral parameters through the period

SPECTRAL INDEX

CUTOFF ENERGY

PWN SEARCH

- PSR: pl + exp cutoff
- PWN: power law

$$TS_{cutoff} = -2\ln\left(\frac{L_{max,pl}}{L_{max,cutoff}}\right)$$

- 1. Analysis of the off-peak emission
 - <u>100 MeV < E <</u> 300 GeV
 - 0.36 < φ < 0.47
- 2. Analysis of the emission over the cutoff
 - 2.5 GeV < E < 300 GeV
 - 0 < φ < 1

1) OFF-PEAK EMISSION

Power law	
γ	2.26 ± 0.03
$N~(10^{-7}~{\rm ph~cm^{-2}~s^{-1}})$	9.79 ± 0.34
Power law exp. cutoff	
γ	1.60 ± 0.07
E_{cutoff} (MeV)	1502 ± 186
$N (10^{-7} \mathrm{ph}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	7.48 ± 0.37

 $TS_{cutoff} = 151$

Pwn rejected at 12.3 σ

1) OFF-PEAK EMISSION

2) EMISSION OVER THE CUTOFF

Power law	
γ	3.64 ± 0.03
$N (10^{-7} \mathrm{ph}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	1.09 ± 0.01
Power law exp. cutoff	
γ	1.48 ± 0.12
E_{cutoff} (MeV)	2752 ± 149
$N~(10^{-7}~{ m ph~cm^{-2}~s^{-1}})$	1.09 ± 0.02

$$TS_{cutoff} = 164$$

Pwn rejected at 12.8 σ