Gravitational Wave

emission mechanisms

in accreting systems

INAF-Milano 26/11/2009 Brynmor Haskell

Southampton



GWs from rotating neutron starsLMXBs and accretion models

- Emission mechanisms
  - Crustal and core mountains
  - Magnetic mountains
  - Unstable modes (r-modes)
    - Superfluid effects and dissipation





Southampton

#### Neutron star mountains

$$\bullet \ \epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

Emission at  $\omega = 2\Omega$ 







### <u>r-mode instability</u>

(Animation by Ben Owen)



Rotating observer



Inertial observer

r-mode generically unstable to GW emission

Emission at 
$$\omega pprox rac{4}{3} \Omega$$

Viscosity damps the mode except in a narrow window of temperatures and frequencies



Southampton



- Interaction at magnetospheric radius  $R_0$
- **Accretion torque**  $\dot{J} = \dot{M} \sqrt{GMR_o}$
- Propeller sets spin equilibrium





### The case for GWs



Need extra spin-down torque

Gravitational waves can do the job!

(Bildsten, 1998)





### Mountain "size"

- **Deformation needed**  $\epsilon \approx 10^{-7}$
- Can the star sustain such a deformation?
- What mechanisms can generate it?
- Do we really expect GW of such amplitude? (i.e. was the accretion model too simple?)





## Thick disk model



### $\blacksquare$ Problems at high $\dot{M}$

Radiation pressure important at high  $\dot{M}$ 

#### Leads to thick sub-Keplerian disk

Use phenomenological model

(Andersson, Glampedakis, BH, Watts 2005)





### Thick disk model











- Detection prospect bleak (Watts et al. 2008)
- What is needed? (the spin!)





- Detection prospect bleak (Watts et al. 2008)
- What is needed? (the spin!)
  - Understand external torque variability





- Detection prospect bleak (Watts et al. 2008)
- What is needed? (the spin!)
  - Understand external torque variability
  - Understand neutron star response





- Detection prospect bleak (Watts et al. 2008)
- What is needed? (the spin!)
  - Understand external torque variability
  - Understand neutron star response
  - Model emission mechanisms





#### Neutron star structure









### <u>Mechanisms</u>



![](_page_16_Picture_1.jpeg)

### <u>Mechanisms</u>

- Mountains
  - Crustal mountains
  - Core mountains
  - Magnetic mountains

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

### <u>Mechanisms</u>

- Mountains
  - Crustal mountains
  - Core mountains
  - Magnetic mountains
- Unstable modes
  - r-modes

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

### <u>Crustal mountains</u>

![](_page_18_Picture_3.jpeg)

- Elastic matter in the crust
- Perturb spherical background  $x^a \longrightarrow x^a + \xi^a$

$$\tau_{ab} = -pg_{ab} + \mu\sigma_{ab}$$

 $\mu$  depends on crustal composition (accreted or non-accreted)

Solve 
$$abla^a au_{ab} = -
ho 
abla_b \phi$$

Crust will crack  $\bar{\sigma} > \sigma_{max}$   $\sigma_{max} \approx 10^{-2} - 10^{-1}$ (Horowitz & Kadau 2009)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

### <u>Mountain results</u>

- Maximum deformation for an accreted crust  $\epsilon \approx 10^{-6}$  (BH, Jones, Andersson, 2006)
- What can produce such a deformation?
  - Non uniform temperature distribution
  - Non uniform stratification

(Ushomirsky, Cutler, Bildsten 2000)

- Magnus force?
- Mountains in the core?

![](_page_20_Picture_0.jpeg)

Southam

### Core mountains

![](_page_20_Figure_3.jpeg)

Elastic core of deconfined quarks (incompressible)

Shear modulus  $\mu = 3.96 \times 10^{33} \left(\frac{\Delta}{10 \text{MeV}}\right)^2 \left(\frac{\mu_c}{400 \text{MeV}}\right)^2 \text{erg/cm}^2$ 

(Mannarelli et al. 2007)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

### Core mountains

![](_page_21_Figure_3.jpeg)

350 MeV<  $\mu_c < 500$  MeV

 $5~{\rm MeV}{<}~\Delta < 25~{\rm MeV}$ 

(BH, Andersson, Jones, Samuelsson, 2007) see also (Owen, 2005)

$$\mu = 3.96 \times 10^{33} \left(\frac{\Delta}{10 \text{MeV}}\right)^2 \left(\frac{\mu_c}{400 \text{MeV}}\right)^2 \text{erg/cm}^2$$

# <u>Magnetic mountains</u>

The shape of a magnetic star is not spherical and an oblique rotator can be a source of GWs

![](_page_22_Figure_4.jpeg)

Stars with strong toroidal fields can "flip" and become orthogonal rotators (Cutler, 2000)

Accretion can "compress" the field and lead to large polar mountains (Melatos & Payne 2005)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

### r-mode instability window

![](_page_23_Figure_3.jpeg)

![](_page_24_Picture_0.jpeg)

Southampton

### r-mode instability window

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_0.jpeg)

Southampton

### <u>r-mode instability window</u>

- Duty cycle short (10% or less)
- Effects of EOS? (Hyperons..)
- Effects of superfluidity?

![](_page_25_Figure_6.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

### Multifluid hydrodynamics

$$\partial_t \rho_{\mathbf{x}} + \nabla_i (\rho_{\mathbf{x}} v_{\mathbf{x}}^i) = 0$$

 $D_i^j$ 

 $(\partial_t + v_{\mathbf{x}}^j \nabla_j)(v_i^{\mathbf{x}} + \varepsilon_{\mathbf{x}} w_i^{\mathbf{y}\mathbf{x}}) + \nabla_i (\tilde{\mu}_{\mathbf{x}} + \Phi) + \varepsilon_{\mathbf{x}} w_{\mathbf{y}\mathbf{x}}^j \nabla_i v_j^{\mathbf{x}} = f_i^{\mathbf{x}} / \rho_{\mathbf{x}} + \nabla_j D_i^j$ 

#### Dissipative terms (bulk viscosity, shear viscosity, etc..)

$$f_i^{\mathbf{x}} = 2\rho_{\mathbf{n}} \mathcal{B}' \epsilon_{ijk} \Omega^j w_{\mathbf{xy}}^k + 2\rho_{\mathbf{n}} \mathcal{B} \epsilon_{ijk} \hat{\Omega}^j \epsilon^{klm} \Omega_l w_m^{\mathbf{xy}}$$

**Mutual Friction** 

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

### Mutual friction

Superfluid rotates by forming quantised vortices

![](_page_27_Picture_4.jpeg)

Electrons scatter dissipatively off vortices

Vortices could be strongly pinned in the crust

![](_page_27_Picture_7.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

### Superfluid r-mode

- Frequency the same as barotropic r-mode to  $\mathcal{O}(\Omega^3)$
- Countermoving motion driven at higher order
- Leads to mutual friction damping and new dissipation coefficients

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

## Hyperon bulk viscosity

- lacksquare Consider a fluid of neutrons, protons, electrons,  $\Sigma^-$
- Most likely to be superfluid
  - New bulk viscosity coefficients
  - In most simple case (low T, charged components locked):
    3 bulk, I shear

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

### Hyperon bulk viscosity

![](_page_30_Figure_3.jpeg)

Single fluid: Nayyar & Owen 2006, Haensel et al. 2002 Multifluid: Haskell et al. (in preparation)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

### Hyperon bulk viscosity

![](_page_31_Figure_3.jpeg)

Single fluid: Nayyar & Owen 2006, Haensel et al. 2002 Multifluid: Haskell et al. (in preparation)

#### GW emission mechanisms in LMXBs Brynmor Haskell

Southampton

![](_page_32_Figure_2.jpeg)

(BH, Andersson, Passamonti, 2009)

#### GW emission mechanisms in LMXBs Brynmor Haskell

Southampton

![](_page_33_Figure_2.jpeg)

(BH, Andersson, Passamonti, 2009)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

### **Conclusions**

- More input needed for detection
- Observational input: spins (also theoretical)
- Theoretical input:
  - External torque variations
  - Neutron star response
  - Realistic mountain scenarios
  - Dissipation mechanisms