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 GWs from rotating neutron stars

 LMXBs and accretion models

 Emission mechanisms
 Crustal and core mountains
 Magnetic mountains

 Unstable modes (r-modes)
 Superfluid effects and dissipation

 Conclusions 
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 Emission at 

 

Neutron star mountains

ω = 2Ω

ε =
Ixx − Iyy
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Rotating observer

Inertial observer

 r-mode generically unstable to 
GW emission

 Emission at 

 Viscosity damps the mode 
   except in a narrow window of 
   temperatures and frequencies 

r-mode instability

ω ≈ 4
3
Ω

(Animation by Ben Owen)
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Simple accretion model

 Interaction at magnetospheric radius

 Accretion torque

 Propeller sets spin equilibrium  

R0

J̇ = Ṁ
√

GMRo
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The case for GWs
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 Need extra spin-down 
   torque

 Gravitational waves can
   do the job!

(Bildsten, 1998)
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 Deformation needed 

 Can the star sustain such a deformation?

 What mechanisms can generate it? 

 Do we really expect GW of such amplitude?
   (i.e. was the accretion model too simple?) 

Mountain “size”

ε ≈ 10−7
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 Problems at high Ṁ

Thick disk model

 Radiation pressure 
 important at high

 Leads to thick 
   sub-Keplerian disk

 Use phenomenological
 model 

Ṁ

(Andersson, Glampedakis, BH, Watts 2005)
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GW detection?
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 Detection prospect bleak (Watts et al. 2008) 

 What is needed? (the spin!)
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 Detection prospect bleak (Watts et al. 2008) 

 What is needed? (the spin!)

 Understand external torque variability

 Understand neutron star response

 Model emission mechanisms

GW detection?
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Neutron star structure
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Mechanisms
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Mechanisms

 Mountains 

 Crustal mountains

 Core mountains 

 Magnetic mountains 
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Mechanisms

 Mountains 

 Crustal mountains

 Core mountains 

 Magnetic mountains 

 Unstable modes

 r-modes 
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Crustal mountains

 Elastic matter in the crust

 Perturb spherical background

 

    depends on crustal composition
  (accreted or non-accreted)

 Solve

 Crust will crack

 

xa −→ xa + ξa

τab = −pgab + µσab

µ

∇aτab = −ρ∇bφ

σ̄ > σmax

σmax ≈ 10−2 − 10−1

(Horowitz & Kadau 2009 )
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Mountain results

 Maximum deformation for an accreted crust

 
 What can produce such a deformation?

 Non uniform temperature distribution

 Non uniform stratification
  (Ushomirsky, Cutler, Bildsten 2000)

 Magnus force? 

 Mountains in the core?

ε ≈ 10−6  (BH, Jones, Andersson, 2006)
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Core mountains

 Fluid exterior (n=1)

 Elastic core of deconfined quarks (incompressible)

 Shear modulus µ = 3.96× 1033

(
∆

10MeV

)2 ( µc

400MeV

)2
erg/cm2

(Mannarelli et al. 2007)
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Core mountains

µ = 3.96× 1033

(
∆

10MeV

)2 ( µc

400MeV

)2
erg/cm2

350 MeV< µc <500 MeV

5 MeV< ∆ < 25 MeV

(BH, Andersson, Jones, Samuelsson, 2007)

see also (Owen, 2005)
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Magnetic mountains
 The shape of a magnetic star is not spherical 

and an oblique rotator can be a source of GWs

 

Stars with strong toroidal fields can “flip” 
and become orthogonal rotators 

Accretion can “compress” the field and lead 
to large polar mountains

Poloidal field Toroidal field

ε ≈ 8× 10−11

(
B

1012 G

)2

ε ≈ −5× 10−12

(
B

1012 G

)2

Star is oblate Star is prolate

(Cutler, 2000)

(Melatos & Payne 2005)
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r-mode instability window
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r-mode instability window
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r-mode instability window

1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11
Temperature (K)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

!
  /

 (
   
" 
# 

)
G

1/
2

c

 Duty cycle short (10% or less)

 Effects of EOS? (Hyperons..)

 Effects of superfluidity?
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Multifluid hydrodynamics

(∂t + vj
x∇j)(vx

i + εxw
yx
i ) +∇i(µ̃x + Φ) + εxw

j
yx∇iv

x
j = fx

i /ρx

∂tρx +∇i(ρxv
i
x) = 0

Mutual Frictionfx
i = 2ρnB′εijkΩjwk

xy + 2ρnBεijkΩ̂jεklmΩlw
xy
m

+∇jD
j
i

Dj
i Dissipative terms (bulk viscosity, shear viscosity, etc..)



GW emission mechanisms in LMXBs
Brynmor Haskell

Mutual friction
Superfluid rotates by forming quantised 

vortices

In the core entrained protons give rise to a 

magnetic field along the vortex lines

Electrons scatter dissipatively off vortices

Vortices could be strongly pinned in the crust 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Superfluid r-mode

 Frequency the same as barotropic r-mode to

 Countermoving motion driven at higher order

 Leads to mutual friction damping and new 
dissipation coefficients

 

O(Ω3)
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Hyperon bulk viscosity

 Consider a fluid of neutrons, protons, electrons, 

 Most likely to be superfluid

 New bulk viscosity coefficients

In most simple case (low T, charged components locked):         
3 bulk,1 shear

Σ−
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Hyperon bulk viscosity

Single fluid: Nayyar & Owen 2006, Haensel et al. 2002
Multifluid: Haskell et al. (in preparation)
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Hyperon bulk viscosity

Single fluid: Nayyar & Owen 2006, Haensel et al. 2002
Multifluid: Haskell et al. (in preparation)
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Mutual friction

(BH, Andersson, Passamonti, 2009)
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Mutual friction

(BH, Andersson, Passamonti, 2009)
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Conclusions

 More input needed for detection

 Observational input: spins (also theoretical)

 Theoretical input: 

 External torque variations

 Neutron star response

 Realistic mountain scenarios

 Dissipation mechanisms


