Silicon Drift Detectors for gamma-ray detection: 15 years of research (and collaboration between Politecnico and INAF-Milano)

Outline

- The Silicon Drift Detector (SDD)
- Gamma-ray detectors based on scintillators and SDDs
- Applications
- Future activities

X-ray interaction in a semiconductor detector, generation of the output signal

INAF-IASF - 24 FEB 2011

Equivalent Noise Charge (ENC)

INAF-IASF - 24 FEB 2011

The classical PIN diode detector

The diode is reversely biased in order to fully deplete from free carriers the semiconductor bulk.
The electrons generated by the X-ray interaction

are collected at the anode, the holes at the cathode.

The detector capacitance CD is proportional to the active area

The Silicon Drift Detector (SDD)

The concept of the SDD has been introduced by E.Gatti (Politecnico di Milano) and P.Rehak (Brookhaven National Laboratory) in 1983

INAF-IASF - 24 FEB 2011

The SDD for X-ray spectroscopy

The electrons are collected by the small anode, characterised by a **low output capacitance**, whose value is independent on the active area of the detector.

Observed energy dependence of Fano factor in silicon at hard X-ray energies

F. Perotti^{a,*}, C. Fiorini^b

^a Istituto di Fisica Cosmica e Tecnologie Relative, C.N.R., via Bassini 15, 20133 Milano, Italy ^b Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 32, 20133 Milano, Italy

Received 29 July 1998; received in revised form 15 September 1998

 N_e : numero di elettroni generati da un evento ionizzante $N_e = E/\epsilon$ con E=energia, $\epsilon = 3.6eV$ in Silicio σ_{Ne}^2 : varianza $\sigma_{Ne}^2 = N_e \cdot F$ F: fattore di Fano (ca. 0.12 in Si)

Fig. 7. Fano factor evaluated at room temperature and at -35° C as a function of the energy of the X-ray detected photons.

INAF-IASF - 24 FEB 2011

Application of the SDD in γ -ray spectroscopy and imaging

high quantum efficiency (~90 %) @
565nm of CsI(Tl), vs. PMT(~30 % of PMT)

- compact, mechanical robust
- no statistical spread due to multiplication
- low operating voltages
- smaller sensitivity to bias and temperature variations
- insensitivity to magnetic fields

Applications:

- medical imaging
- gamma-ray astronomy
- homeland security
- nuclear physics experiments

Scintillation detection using a silicon drift chamber with on-chip electronics

C. Fiorini^{a,*}, F. Perotti^b

^a Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 32, 20133 Milano, Italy ^b Istituto di Fisica Cosmica e Tecnologie Relative, C.N.R., via Bassini 15, 20133 Milano, Italy

Received 16 June 1997

INAF-IASF - 24 FEB 2011

at the time of publication, the world-record energy resolution with a scintillator

Measurement carried out at CNR – Via Bassini – the 31 December 1996

INAF-IASF - 24 FEB 2011

Gamma-ray spectroscopy with an SDD coupled to LaBr₃

Fiorini, C.; et al. "Gamma-Ray Spectroscopy With LaBr3:Ce Scintillator Readout by a Silicon Drift Detector"; IEEE Transactions on Nuclear Science, Volume 53, Issue 4, Part 2, Aug. 2006 Page(s):2392 – 2397.

INAF-IASF - 24 FEB 2011

INAF-IASF - 24 FEB 2011

Anger Cameras based on SDDs

Main advantages (vs. pixellated detectors, e.g. CdTe or CZT):

- spatial resolution (<mm) achieved with ~ 10 times larger photodetector pixel size
- \Rightarrow 1/100 readout channels needed for a given spatial resolution
- good detection efficiency, adjustable vs. energy with scintillator thickness

Main disadvantage

Poorer energy resolution, especially at low energy, due to the scintillator conversion (although new scintillators like $LaBr_3$ are reducing this gap) and to the electronics noise added by the several photodetectors used for the light readout

Small prototype of SDD - CsI(Tl) Anger camera

INAF-IASF - 24 FEB 2011

The DRAGO Gamma Camera (DRift detector Array-based Gamma camera for Oncology)

• leakide thickness 300 pArcm² @ RT • 0 = 80% @ 40 ks 30 nm of CsI(TI)

INAF-IASF - 24 FEB 2011

γ -ray measurements

INAF-IASF - 24 FEB 2011

Spatial resolution

Spatial resolution = 0.25 - 0.50 mm

(ref: 3.2mm SDD pixel size)

Verification of DOI capability by measuring a 45° tilted beam

INAF-IASF - 24 FEB 2011

Preliminar *in vivo* planar scintigraphy of a mouse

[⁹⁹Tc] MDP
2.5mCi injected activity
2h. after injection,
10min acquisition time

Measurements carried out at Hospital San Raffaele, Milano, Italy Hospital San Paolo, Milano, Italy

INAF-IASF - 24 FEB 2011

Preliminar in vivo **Direct Cell imaging**

In-vivo dendritic cells tracking by means of the DRAGO camera

Direct Cell labeling

Measurements carried out at Hospital San Paolo, Milano, Italy

INAF-IASF - 24 FEB 2011

features:

- **10x10cm²** FOV
- intrinsic resolution ~ 1mm
- overall resolution ~ 2.5mm @5cm
- energy resolution ~ 10% @140keV
- compactness
- compatibility with MRI

Applications:

- planar clinical studies of spine and small bones
- intra-operative imaging of breast cancer and melanoma
- imaging of parathyroid and thyroid
- SPECT measures in test phantoms
- combined HI-CAM and MRI measures
- small animal imaging

The consortium:

- Politecnico di Milano, Italy
- MPI Halbleiterlabor, Germany
- L'ACN, Italy
- Nuclear Fields Holland
- UCL London, UK
- OORR-Bg, Italy
- Hospital San Pau, Barcelona, Spain
- University of Milan, Italy
- Cf Consulting, Italy

INAF-IASF - 24 FEB 2011

Array of 20 monolithic arrays of 5 SDDs (100cm² total area)

INAF-IASF - 24 FEB 2011

Biasing and readout electronics of the camera

INAF-IASF - 24 FEB 2011

Assembly of the camera head

INAF-IASF - 24 FEB 2011

FOV and spatial resolution

INAF-IASF - 24 FEB 2011

Applications of the HICAM gamma camera

INAF-IASF - 24 FEB 2011

Clinical trial: Lymphoscintigraphy

Lymphoscintigraphy to localize the sentinel node

E-CAM

INAF-IASF - 24 FEB 2011

Summary: 15 years of research an development

1997

First SDD-scintillator gamma detector world-record energy resolution (0.07cm²)

2000

proof of a SDDbased gamma-ray imaging detector (0.35cm²)

2004

<u>200μm</u> resolution gamma camera (<u>1cm²</u>)

INAF-IASF - 24 FEB 2011

2007

The DRAGO gamma camera <u>first animal imaging</u> (7cm²)

2009

The HICAM gamma camera <u>first cellular imaging</u> (<u>25cm²</u>)

2010

The large HICAM gamma camera <u>first clinical imaging</u> (<u>100cm²</u>)

INAF-IASF - 24 FEB 2011