SVOM: alla ricerca dei GRB più distanti

Diego Götz CEA-SAp Saclay

17/05/2007

Gamma-Ray Bursts in una slide

2704 BATSE Gamma-Ray Bursts

Banda gamma (20 keV – 1 MeV):

- Sorgenti intense
- Spettri non termici (SR+IC)
- Durata e curva di luce variabili su
- tempi scala da ~ms a ~100 s
- $E \sim 10^{51} \text{--} 10^{54} \text{ ergs (iso)}$

X, Ottico, Radio:

- · Emissione ritardata (afterglow) non termica
- \cdot E dello stesso ordine
- \cdot Decadimento del flusso a legge di potenza
- Misura della posizione con precisione dell'arcsec e possibilita` di misurare z

Gamma-Ray Bursts in una slide

Gamma-Ray Bursts in una slide

2704 BATSE Gamma-Ray Bursts

Banda gamma (20 keV – 1 MeV):

- Sorgenti intense
- Spettri non termici (SR+IC)
- Durata e curva di luce variabili su
- tempi scala da ~ms a ~100 s
- $E \sim 10^{51} \text{--} 10^{54} \text{ ergs (iso)}$

X, Ottico, Radio:

- · Emissione ritardata (afterglow) non termica
- \cdot E dello stesso ordine
- \cdot Decadimento del flusso a legge di potenza
- Misura della posizione con precisione dell'arcsec e possibilita` di misurare z

Svom Scientific requirements (high-energy aspects)

Study the nature of the prompt emission

- Study the relationship between prompt and afterglow emissions
- Explore the central engine, in particular through the precursor
- Determine the nature of the progenitor star, the condition of a judicious use of GRBs in cosmology

Svom Scientific requirements (high-energy aspects)

Study the nature of the prompt emission

- Study the relationship between prompt and afterglow emissions
- Explore the central engine, in particular through the precursor
- Determine the nature of the progenitor star, the condition of a judicious use of GRBs in cosmology

In the post-Swift era, it is crucial to collect as much information as possible on a single burst (Amati, Ghirlanda relations, etc.)

Specifications for SVOM's high-energy devices

 To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (possibly high z GRBs)

Specifications for SVOM's high-energy devices

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (possibly high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X +GRB peak energy!)

Hubble diagram

Hubble diagram

Ghirlanda et al., ApJ 613, L13, 2004

Hubble diagram

GRBs as cosmological tools

Ghirlanda & Ghisellini 2006 (astro-ph/0602498)

GRBs as cosmological tools

Ghirlanda & Ghisellini 2006 (astro-ph/0602498)

GRBs as cosmological tools

17/05/2007

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (as e.g. high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X + GRB peak energy!)

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (as e.g. high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X + GRB peak energy!)
- To allow in 75% of the cases a precise GRB redshift measurement

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (as e.g. high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X + GRB peak energy!)
- To allow in 75% of the cases a precise GRB redshift measurement
 - Prompt < 10 s measurement of the celestial coordinates of all GRBs with an accuracy better than 10 arc min.

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (as e.g. high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X + GRB peak energy!)
- To allow in 75% of the cases a precise GRB redshift measurement
 - Prompt < 10 s measurement of the celestial coordinates of all GRBs with an accuracy better than 10 arc min.</p>
 - Prompt < 10 s measurement of the celestial coordinates of 50% of all GRBs with an accuracy better than 1 arc min.</p>

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (as e.g. high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X + GRB peak energy!)
- To allow in 75% of the cases a precise GRB redshift measurement
 - Prompt < 10 s measurement of the celestial coordinates of all GRBs with an accuracy better than 10 arc min.
 - Prompt < 10 s measurement of the celestial coordinates of 50% of all GRBs with an accuracy better than 1 arc min.</p>
 - Prompt < 1min transmission of the celestial coordinates of all GRBs to ground based observatories

- To detect during the nominal duration of the mission at least 200 GRBs of all kinds: short GRBs (from few ms to 1-2 s), long GRBs (from 2 s to > 100 s), GRBs rich in X-rays (as e.g. high z GRBs)
- To observe all GRBs before, during and after the burst in the energy band from 1 keV-5 MeV (prompt X + GRB peak energy!)
- To allow in 75% of the cases a precise GRB redshift measurement
 - Prompt < 10 s measurement of the celestial coordinates of all GRBs with an accuracy better than 10 arc min.
 - Prompt < 10 s measurement of the celestial coordinates of 50% of all GRBs with an accuracy better than 1 arc min.</p>
 - Prompt < 1min transmission of the celestial coordinates of all GRBs to ground based observatories</p>
 - Adjustment of the observing program to allow in 75% of the cases follow up observations with large 8 m telescopes

THE ECLAIRs microsatellite heritage

1- A set of X-ray and gamma-ray space telescopes (CXG / SXCs)

2- A real time process unit able to localize the source (UTS)

The space segment

3-An alert network (The VHF network)

4-A dedicated ground robotic unit (GFT)

5- A ground segment

The ECLAIRs Instrumnent Characteristics

		CXG IBIS/ISGRI heritage	SXCs HETE II heritage (MIT)
	Energy range	4 – 300 keV	1-12 keV
	Field of view	2 sr	2 sr
	Sensitive area	1024 cm ² CdTe 6400 : 4mm x 4 mm pixels	96 cm ² Si 1k x 1K : 24µm x 24µm pixels
	Mask open fraction	30%	20%
	Burst localization rate	80 year-1	40 year-1
17/05/200	Source localization	10 arcmin for 5o	<1 arcmin for 5σ

ECLAIRS The Alert strategy

Time after trigger	Number of bursts (enitre mission)	Error Box	
t0 + 10s < T <t0 +="" 1mn<="" td=""><td>200 bursts 100 bursts</td><td>10 arcmin <1 arcmin</td><td>CXG SXC</td></t0>	200 bursts 100 bursts	10 arcmin <1 arcmin	CXG SXC
t0 + 5 mn	40 bursts	1 arcsec	GFTs

i = 30 ° h = 600 km

SVOM 38 stations

17/05/2007

Pointing strategy / antisolar pointing motivations

HETE 2 SXC redshift success rate = 72% (18 redshifts out of 25 localization)

The world large telescopes are located at tropical latitudes

The satellite is always aiming at the direction of the night The center of the CXG field of view is far above the horizon for tropical ground telescopes

17/05/2007

Pointing strategy / antisolar pointing motivations

Inclination = 30° Altitude = 600 km

Pointing strategy / antisolar pointing consequences

Exposition factor (1) The South Atlantic Anomaly

Pointing strategy: the γ-ray sky constraint

Uhuru X-ray map

X-ray sources from the Fourth Uhuru Catalog displayed in galactic coordinates. The size of the symbol representing a source is proportional to the logarithm of the peak source intensity. The 339 X-ray sources observed with the UHURU (SAS-A) X-ray observatory are displayed. (Adapted from Forman, W. et al., Ap. J. Suppl., 38, 357, 1978.)

Pointing strategy: Optimization

ONE YEAR

Summary

ECLAIRS/SVOM will provide accurate localizations (10' \Rightarrow 1') for 80 \Rightarrow 40 bursts yr⁻¹

2 dedicated robotic telescopes

For all the bursts broad band X/ γ (1 keV-5 MeV) spectra will be available (E_{peak} !)

The on board Wide Field Optical Camera will provide simultaneous coverage and precursors search

The pointing strategy will be optimized in order to enhance the follow up possibilties for large ground based telescopes (redshift!)