

BLAZAR FLARING PATTERNS (B-FLAP)

CLASSIFYING BLAZARS OF UNCERTAIN TYPE DETECTED BY FERMI GAMMA-RAY SPACE TELESCOPE

GRAZIANO CHIARO ASTROSIESTA IASF/INAF 13/4/2017

The Large Area Telescope (LAT) is the principal scientific instrument on the Fermi Gamma Ray Space Telescope spacecraft launched into a near-earth orbit on 11 June 2008.

The LAT is an imaging high-energy gamma-ray telescope covering the energy range from about 20 MeV to more than 300 GeV.

3FGL CATALOG

3033 detected sources 1583 unclassified

Description	Identified		Associated	
	Designator	Number	Designator	Number
Pulsar, identified by pulsations	\mathbf{PSR}	143		
Pulsar, no pulsations seen in LAT yet			\mathbf{psr}	24
Pulsar wind nebula	PWN	9	pwn	2
Supernova remnant	\mathbf{SNR}	12	snr	11
Supernova remnant / Pulsar wind nebula			spp	49
Globular cluster	GLC	0	glc	15
High-mass binary	HMB	3	hmb	0
Binary	BIN	1	bin	0
Nova	NOV	1	nov	0
Star-forming region	\mathbf{SFR}	1	\mathbf{sfr}	0
Compact Steep Spectrum Quasar	CSS	0	CSS	1
BL Lac type of blazar	BLL	18	bll	642
FSRQ type of blazar	\mathbf{FSRQ}	38	\mathbf{fsrq}	446
Non-blazar active galaxy	AGN	0	agn	3
Radio galaxy	RDG	3	rdg	12
Seyfert galaxy	SEY	0	sey	1
Blazar candidate of uncertain type	BCU	5	bcu	568
Normal galaxy (or part)	GAL	2	gal	1
Starburst galaxy	SBG	0	\mathbf{sbg}	4
Narrow line Seyfert 1	NLSY1	2	nlsy1	3
Soft spectrum radio quasar	\mathbf{SSRQ}	0	ssrq	3
Total		238		1785
Unassociated				1010

THE PROBLEM

The difficulty of finding counterparts of high-energy -ray sources

because

- positional errors in their measured locations,
- limited photon statistics / faint sources
- poor angular resolution of the gamma –ray telescopes
- bright diffuse gamma-ray emission from the Milky Way and extragalactic

GeV γ -ray sky = 20% Point sources + 80% Diffuse γ -ray

THE GOAL

because Blazars represent more than 50% of the AGN Sky (100 MeV – 300 GeV)

A fast and easy screening method for <u>uncertain blazars</u> classification.

In contrast to non-active galaxies which have a constant luminosity, AGN emission is frequently observed to be **Variable**.

Variability could be used for the purposes of this study

BL Lacs and FSRQs - population / flux percentage distribution in 3FGL

The parameter might be the γ flux (ph cm ^-2 s ^-1)

Empirical Cumulative Distribution Function (ECDF)

Because BL Lac are LESS VARIABLE than FSRQ. BL Lac ECDFs are shifted to the left respect to FSRQ.

B-FlaP ECDF

Machine Learning Artificial Neural Network

From "looking by eye" to Likelihood

This is the two-class approach where we encoded the output of the associated blazars so that LBLL is 1 if the object is a BL Lac and LBLL is 0 if it is a FSRQ.

Precision ~ 90%

Sensitivity ~ 90% BLL ~ 70% FSRQ

First result

Validation

Marcello Giroletti IRA Bologna

RADIO COUNTERPART

Validation

Giovanni La Mura OAPD UniPD

OPTICAL COUNTERPART

Validation

One of the most important optical campaign for 3FGL BCUs

Validation

	3FGL	B-FLAP
BL LAC	660	1272
FSRQ	484	823
PULSAR	167	520
OTHERS	139	139
BLAZAR UNCERTAIN	573	77
UNASSOCIATED	1010	117
BL LAC	58% of blazars	61%
FSRQ	42%	39%
BLAZAR UNCERTAIN		-87%
UNASSOCIATED		-88%

0.566 < L < 0.850 1.7 < PI < 2.7 Avg sign > 4.0

3FGL J0153.4+7114 - TXS 0149+710

3FGL J0009.6-3211 - IC 1531

B-FlaP

Bassi T. Dept Physic & Astron. Univ Bologna I -Master Thesis

3FGL J0525.8-2014 - PMN J0525-2010

Nuria Alavarez Crespo, Univ Torino

Elliptical galaxy RA 81.366333 Dec -20.181750 z = 0.092 R = 435.16 Kpc 1.4 GHz = 230.4 milliJy 3FGL significance = 5.271

3FGL J0039.0-2218 - PMN J0039 -2218

Elliptical galaxy RA 9.784208 Dec -22.333722 z = 0.064380R= 350 Kpc 1.4 GHz = 117.0 milliJy 3FGL significance = 5.411

6dFGRS - DR3

Abdo (2010) ApJ 720,912 Grandi P. (2015) MNRAS, 457, 2-8

LESSON LEARNED

BLAZAR FLARING PATTERNS (B-FLAP)

${\rm Although}\gamma\text{-ray flux}{\rm \ by}$

B-FlaP method cannot replace confirmed and rigorous techniques for blazar classication, it may be configured as

an additional powerful approach for the preliminary and reliable identication of uncertain γ - ray objects mainly blazars.

when detailed observational data are not yet available.

Blazar Flaring Patterns (B-FlaP) Classifying Blazar Candidate of Uncertain type in the Third Fermi-LAT catalog.

G.Chiaro et al. (2016) MNRAS, Vol.462, Issue 3, p.3180-3195

Thanks for listening.

Graziano