Warm and cold gas in obscured quasars

Mari Polletta (IASF-INAF Milan, Italy)

<u>Collaborators:</u> N. Nesvadba (IAS, France), R. Neri (IRAM, France), A. Omont (IAP, France), S. Berta (MPE, Germany), J. Bergeron (IAP, France)

Astro Siesta, March 3, 2011

A significant deployement of energy from the AGN onto the interstellar medium of the galaxy is assumed in cosmological simulations to:

 reproduce the M_{BH}-M_{bulge} relation and scatter (Richstone et al. 1998; Ferrarese & Merritt 2000; Tremaine et al. 2002)

Galaxies host black holes of mass proportional to their bulge mass, luminosity, velocity dispersion

Evidence that BHs regulated galaxies growth or viceversa

(Kormendy & Richstone 1995; Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhard et al. 2000; Marconi & Hunt 2003; Häring & Rix 2004)

A significant deployement of energy from the AGN onto the interstellar medium of the galaxy is assumed in cosmological simulations to:

- reproduce the M_{BH}-M_{bulge} relation and scatter (Richstone et al. 1998; Ferrarese & Merritt 2000; Tremaine et al. 2002)
- reproduce the bright end of the galaxy luminosity and mass function (Bower et al. 2006, Croton et al. 2006)

Without AGN heating → overprediction of Iuminous galaxies and failure to reproduce the bright end cut-offs in the Iuminosity functions.

(Croton et al. 2006)

A significant deployement of energy from the medium of the galaxy is assumed in cos

- reproduce the M_{BH}-M_{bulge} relation and scatter (Richsto Tremaine et al. 2002)
- reproduce the bright end of the galaxy luminosity and Croton et al. 2006)
- reproduce the galaxies color distribution (most massive galaxies are red and dead)

Red sequence (Passive galaxies)

Blue sequence (Star forming galaxies)

Without AGN heating rightarrow most massive - galaxies are blue rather than red

A significant deployement of energy from the AGN onto the interstellar medium of the galaxy is assumed in cosmological simulations to:

- reproduce the M_{BH}-M_{bulge} relation and scatter (Richstone et al. 1998; Ferrarese & Merritt 2000; Tremaine et al. 2002)
- reproduce the bright end of the galaxy luminosity and mass function (Bower et al. 2006, Croton et al. 2006)
- reproduce the galaxies color distribution (most massive galaxies are red and dead)
- keep massive galaxies old, red and dead

Secular processes replenish the gaseous reservoirs (gas infall & return from evolved stars)

Heating prevents the gas from forming new young stars

How can we heat the ISM?

Radio jets (radio loud AGN)

Need a mechanism that :

- affects the gas on galactic scales (kpc)
- carries enough energy to heat/eject the gas
- is quite common in galaxies

Supernovae (star forming regions)

(Croton et al. 2006)

Radiation driven winds (radiatively efficient AGN)

(Cen 2011)

(Silk & Rees 1998; Fabian 1999)

ANY OBSERVATIONAL EVIDENCE ?

Astro Siesta, March 3, 2011

AGN-driven outflowing gas

- X-ray warm absorbers (NGC 4151; Kraemer et al. 2005) SMALL SCALES !!
- UV absorption lines (e.g. Crenshaw et al. 1999) SMALL SCALES or LITTLE MASS !!
- broad (1000 km/s) HCO⁺ coincident with jet (4C 31.04; Garcia-Burillo et al. 2007) Radio !!
- broad (1400 km/s) blueshifted absorption in HI (3C 293; Morganti et al. 2003) Radio !!
- broad blueshifted outflows of warm gas (high-z RG; Nesvadba et al. 2006, 2008) Radio !!
- galactic scale NLR disturbed by the AGN (Greene et al. 2011) But no winds...
- extended blueshifted broad [OIII] line (SMM J1237+6203; Alexander et al. 2010) Maybe ...
- high velocity warm and cold gas outflows (e.g. Mrk 231; Fischer et al. 2010; Feruglio et al. 2010) Great, but...

Outflows of warm gas in high-z Radio Galaxies

[OIII] relative velocity maps (Outflow) & Radio contours (Jet)

Gas kinematics from [OIII] (IFU observations)

(Nesvadba et al. 2008)

Turbulent high velocity extended warm gas in a z~2 SMG

Sub-millimetre galaxy SMM J1237+6203

Blueshifted broad (FWHM=823 km/s) [OIII] component

Turbulent, high velocity gas extended over kpc scales (8kpc)

150 100 SMM J1237+6203 z=2.0751 50 [OIII] -50 -100-1500,10 5 -10erg radius(kpc) **Broad** Flux (x10 0.05 2-Mr M.M.M.M. 0.00 1.51 1.52 1.53 1.541.55 wavelength (µm)

(Alexander et al. 2010)

10

Astro Siesta, March 3, 2011

Outflowing molecular gas in Mrk 231

- Broad (~750 km/s) CO wings (Feruglio et al. 2010)
- OH and H₂O absorption lines, outflow v~-1400 km/s (Fischer et al. 2010)
- Wide angle, kpc scale neutral gas outflow with v~-1100 km/s (Rupke & Veilleux 2011)

11

....more evidence needed !

A radio jet can entrain the gas and carry it outside of the galaxy, but only 10% of AGN are radio-loud.

What about the rest of the AGN ? Can radiation pressure drive the gas outside the galaxy ?

Need to trace the ISM in high-z massive starburst galaxies with a powerful and NON RADIO-LOUD AGN

An army of telescope to find good candidates and look for feedback signatures

CFHT (optical)

Spitzer (IR) IRAM: MAMBO (mm)

Plateau de Bure (CO - molecular gas)

VLT: SINFONI (NIR - ionized gas)

Astro Siesta, March 3, 2011

Obscured QSO hosted by powerful starbursts at z≥3.5

Massive host with intense starburst and AGN activity

SW022550

SW022513

 $L(AGN) \sim 10^{46} \text{ erg/s} \& L(SB) \sim 10^{46-46.8} \text{ erg/s} \rightarrow L_{bol} \sim 10^{47} \text{ erg/s}$

(Polletta et al. 2008)

Astro Siesta, March 3, 2011

Plateau de Bure Interferometer Observations

PdBI:

interferometer with 6 antennnas3 bands: 1.3mm, 2mm & 3mmD configuration with the 3mm bandExposure times:

5.3 hrs per SW022550 8.9 hrs per SW022513 Beam size: 8.4"×4.8" for SW022550 6"×4" for SW022513

GOAL: detect the CO(4-3) line (v_{rest} = 461 GHz)

SINFONI Observations

SINFONI on VLT: Image slicing integral field spectrograph $FOV = 8" \times 8"$ Pixel scale = 0.25 " × 0.25 " HK = 1.45-2.45µm (observer-frame) H = 3300-4100Å (rest-frame) K = 4400-5400Å (rest-frame) Exposure ~ 3h/target

GOAL: kinematics of the warm gas

SW022550

17

Ultraviolet rest-frame spectrum of SW022550

VLT/ISAAC (Polletta et al. 2008)

Broad blueshifted lines are commonly interpreted as outflowing gas

Optical rest-frame spectrum of SW022550

•Broad (FWHM=2212 km s⁻¹) [OIII] 4959 Å emission line at z=3.876

Compact and associated with the continuum

z consistent with UV lines

VLT/SINFONI (Nesvadba, Polletta et al. 2011)

Molecular gas kinematics in SW022550

Spectrum of CO J=4-3 emission

Velocity-integrated Map

Double peak profile FWHM₁ = FWHM₂ = 340 km/s $\Delta v = 500$ km/s $z_1=3.868$ $z_2=3.877$

CO J=4-3: $I_{CO}=1.4 \pm 0.16$ Jy km/s Compact $M_{gas}=4.3 \times 10^{10} M_{sun}$

(Polletta et al. 2011)

The kinematics of the broad and narrow UV lines match the two CO peaks

Astro Siesta, March 3, 2011

density (mJy)

Flux

20

The origin of the two CO peaks

Two components separated by 2.2" (~ 10 kpc)

(Polletta et al. 2011)

What drives the kinematics of the ionized and of the molecular gas in SW022550?

FACTS:

- CO line profile (double) and width (300-400km/s)
 merger or rotating disk
- broad and luminous [OIII] → the AGN affects the warm ionized ISM : outflow ?

1. merger MAYBE

but only one point source in the multi- λ images

- 2. single rotating galaxy UNLIKELY
 - implies high velocities and is hard to reconcile with UV spectrum

CO

AGN-driven warm gas outflow LIKELY

supported by the width of the [OIII] line

AGN-driven warm gas outflow (perhaps in a merger)

SW022513

Optical rest-frame spectrum of SW022513

Broad blueshifted lines likely trace outflowing gas

Ionized gas in SW022513

Spectrum from the nucleus (continuum peak)

FWHM ~ 5090km/s $\Delta v = -1300$ km/s

The broadest [OIII] components are around the continuum peak → spatially coincident

Large widths imply perturbations and blueshift suggests an outflow: AGN driven outflow ?

Broad [OIII] (winds) also detected in compact radio galaxies and submm galaxies (e.g. Nesvadba et al. 2008; Holt et al. 2008; Alexander et al. 2010)

Spectrum from the southern region ([OIII] peak)

The strongest [OIII] component is narrow

- & spatially offset (5 kpc) from the nucleus
 - → extended narrow line region

(Nesvadba, Polletta et al. 2011)

Molecular gas kinematics in SW022513

Extremely broad non gaussian profile $z_{CO} = 3.422$ FWHM = 1020 km/s $\Delta v = -183$ km/s ($z_{sys} = z_{narrow H\beta} = 3.4247$)

CO J=4-3: $I_{CO}=1.6 \pm 0.13$ Jy km/s Unresolved & compact $M_{gas}=4.1 \times 10^{10} M_{\odot}$

Molecular (CO) vs lonized (H_β) gas in SW022513

Good match between the H β and the CO lines

Astro Siesta, March 3, 2011

What powers the gas in SW022513?

FACTS:

- similar kinematics of the ionized and molecular gas 🛩 common origin & power source

 merger NO difficult to explain the broad lines
 single rotating galaxy NO inconsistent with line profile and velocity
 AGN-driven outflow YES supported by simulations and observations

Significant amount of outflowing molecular gas at galactic scales

Outflowing gas kinetic energy

 $E_{kin} = \frac{1}{2} M v^2$

M : outflowing gas mass (40% of mol. gas \rightarrow M(H₂) = 1.6x10¹⁰ M_o) v : velocity relative to the systemic velocity (183 km/s)

How does the AGN drive the outflow in SW022513 ? Momentum-driven radiative pressure driven by the AGN Outflow E: AGN E:

 $E_{kin} = 5 \times 10^{57} \text{ erg}$

AGN E: Lbol^{AGN} X $\tau_{AGN} \sim 10^{61} \text{ erg}$

32

The luminosity necessary to launch a wind is :

 $L > L_M \cong 3 \times 10^{46} f_{g0.1} \sigma^4_{200} \text{ erg s}^{-1}$

 σ_{200} : vel. dispersion in 200 km s⁻¹ (FWHM/2.4 \approx 400 km s⁻¹) $f_{g0.1}$: gas fraction in 0.1 (0.1-0.2) L_M : critical luminosity (Murray et al. 2005)

 $L_M = 5 \times 10^{47} \text{ erg s}^{-1} > L_{AGN} \cong 5 \times 10^{46} \text{ erg s}^{-1}$

The AGN radiation cannot launch such an outflow

How does the AGN drive the outflow in SW022513? Mechanical energy injected through a radio jet

> Outflow E: $E_{kin} = 5 \times 10^{57} erg$

Radio E: E_{mech} = L_{mech} x τ _{radio}

9x10⁵⁸ erg

 $L_{1.4GHz} = 2.4 \times 10^{25} W Hz^{-1}$ $L_{mech} = 3 \times 10^{38} f_W^{1.5} L_{rad, 28}^{6/7} W = 3 \times 10^{44} erg s^{-1}$ $T_{radio} = 10 Myr$

(Willott et al. 1999; Nesvadba et al. 2011)

MECHANICAL ENERGY ASSOCIATED WITH THE RADIO POWER CAN ACCELERATE THE GAS !

Summary

Molecular and ionized gas observations of two obscured QSOs at z~3.4-3.9 with large SFRs (>500 M/yr) and large AGN luminosities → good candidates to study the impact of powerful activity on the ISM

Extended narrow line region \Rightarrow the AGN affects the gas at galatic scales (10 kpc)

Blueshifted, broad [OIII] line emission \Rightarrow AGN-driven outflow with velocity of ~1000 km/s of warm gas

Large masses of molecular gas (CO) with blueshifted broad components matching the warm ionized gas (in 1 object) \Rightarrow molecular gas outflow entrained by the AGN

The AGN luminosity cannot launch an outflow with the observed velocity, while the radio power can deposit enough mechanical energy \Rightarrow radio powered outflow

Powerful radio quiet sources can power an outflow of warm and cold gas

Astro Siesta, March 3, 2011