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What is FFTW?

“FFTW is a C subroutine library for computing the
discrete Fourier transform (DFT) in one or more
dimensions, of arbitrary input size, and of both real
and complex data (as well as of even/odd data, i.e.
the discrete cosine/sine transforms or DCT/DST).”

http://www.fftw.org/
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Part I

The Fourier Transform
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Benchmarks
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The Fourier transform

Discrete FT formula x → y :

y [i ] =
n−1∑
j=0

x [j ]ω−ij
n ,

with ωn = e2πi/n. This is a O(N2) algorithm, which
means it does not scale well.
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The Fast Fourier transform

In 1965 Cooley and Turkey proved that if n = n1n2
then

y [i1+i2n1] =

n2−1∑
j2=0

 n1−1∑
j1=0

x [j1n2 + j2]ω
−i1j1
n1

ω−i1j2
n

ω−i2j2
n2

yields the same results.

Since the inner sum is a DFT, the procedure can be
recursive. If N = 2k , then the algorithm is
O(N log N).
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The Fast Fourier transform

Cool! Our problems are solved!

Not so fast, mister. . .
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Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);

2 Cooley-Tuckey’s prime factor algorithm (as
above, but gcd(n1,n2) = 1);

3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36



Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);

3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36



Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);

4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36



Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);

5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36



Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)

6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36



Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36



Problems in writing a FFT library (2/4)

Need to support:
1 Real and complex data
2 Single precision and double precision
3 Forward (→) and backward (←) transforms

Thus, 23 = 8 combinations for each algorithm you
want to implement.

(And this does not consider multidimensional
transforms. . . )
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Problems in writing a FFT library (3/4)

Sometimes you can rewrite a mathematical formula
in a way that is computationally more efficient, e.g.:

y = ax4 + bx3 + cx2 + dx + e

(10 multiplications, 4 additions) can be rewritten as

y = x(x(x(ax + b) + c) + d) + e

(4 multiplications, 4 additions).

Again, you have to do
this optimization for all the algorithms/variants you
want to implement!
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Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on
some CPU, and vice versa on a different
architecture.

For instance, an algorithm requires 3 sums and 2
multiplications, another one 5 sums and 1
multiplication. Which one do you choose?

This applies to FFT, as e.g., if N = 24 you can either
use Cooley-Tuckey (since N = 3× 23) or the
split-radix algorithm (since N = 4n).
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To recap

1 One definition of FT, but many algorithms and
ways of coding them.

2 Each one must be optimized;
3 Not clear which one is the best if you do not

know a priori the architecture you’re going to run
your program on.
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Part II

FFTW’s approach
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Problems and solutions

1 One definition of FT, but many algorithms and
ways of coding them.

→ Specify the algorithms
in some high-level language, then automatically
translate them.

2 Each one must be optimized;

→ Make an
optimizing compiler do the translation.

3 Not clear which one is the best. . .

→ Profile
each algorithm at runtime, before actually using
the library (create a plan).
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FT algorithms in FFTW

FFTW specifies FT algorithms using OCaml
(http://www.ocaml.org), a high-level functional
language with some neat features.
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Example in OCaml

To see how the features of OCaml can be useful for
writing FT algorithms, we’ll first show how to solve a
simple problem using OCaml:

How would you write a function that calculates
derivatives?
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Differentiation in C

/* derivative.c
cc -o derivative derivative.c -lm */

#include <float.h>
#include <math.h>
#include <stdio.h>

typedef double fn_t (double);
double derivative(fn_t * f, double x)
{

const double eps = 1e-6;
return ((*f)(x + eps) - (*f)(x)) / eps;

}

void main(void)
{

printf("The derivative of cos(x) in x=1 is %f\n",
derivative(cos, 1));

}
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Differentiation in OCaml

(* derivative.ml
ocamlopt -o derivative derivative.ml *)

(* There’s no need to specify types,
as the compiler will infer them *)

let derivative f x =
let eps = 1e-6
in (f (x +. eps) -. f x) /. eps;;

Printf.printf "The derivative of cos(x) in x=1 is %f\n"
(derivative cos 1.0);;
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Differentiation: improvements

Can we do better?
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Differentiation: improvements

Computing the derivative symbolically would make
us safe from rounding errors (why using 10−6 for eps
instead of 10−8?).

It would also allow to make a few optimizations, e.g.:
double function(double x)
{
double constant = extremely_slow_function();
return x + constant;

}

However, it is extremely hard to do this in
C/C++/Python. . . .
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Differentiation in OCaml: expressions

Let’s see how to do this in OCaml. We’ll follow a
tutorial by Jon Harrop, the author of ”OCaml for
Scientists”
http://www.ffconsultancy.com/ocaml/benefits/symbolic.html.
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The idea

To compute a derivative, we need to know the
inner structure of a function;

But a C/OCaml function like sin is a R→ R
“black box”;
We therefore need to specify functions
symbolically, by means of an ad-hoc type;
We need to define some mathematical
operators on this type, as well as their
properties;
Last but not least, we need to specify how to
compute derivatives!
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Differentiation in OCaml: expressions

type expr =
| Add of expr * expr (* Sum of two expressions *)
| Mul of expr * expr (* Product of two expressions *)
| Int of int (* Integer constant *)
| Var of string (* Named variable, like "x" *)
| Sin of expr (* Sine *)
| Cos of expr ;; (* Cosine *)

Example: sin
(
3x + 1

)
+ 2x becomes

let x = Var("x") in
Add(Sin(Add(Mul(Int 3, x),

Int 1)),
Mul(Int 2, x))

Tomasi M. (INAF) The secrets of FFTW January, 2012 23 / 36



Differentiation in OCaml: expressions

type expr =
| Add of expr * expr (* Sum of two expressions *)
| Mul of expr * expr (* Product of two expressions *)
| Int of int (* Integer constant *)
| Var of string (* Named variable, like "x" *)
| Sin of expr (* Sine *)
| Cos of expr ;; (* Cosine *)

Example: sin
(
3x + 1

)
+ 2x becomes

let x = Var("x") in
Add(Sin(Add(Mul(Int 3, x),

Int 1)),
Mul(Int 2, x))

Tomasi M. (INAF) The secrets of FFTW January, 2012 23 / 36



Differentiation in OCaml: operations

Defining expressions in this way is boring!

We define a nice shorthand for Add by defining a
new mathematical operator, +:, and using OCaml’s
powerful pattern matching:
let rec ( +: ) f g = match f, g with

| Int n, Int m -> Int (n + m)
| Int 0, f | f, Int 0 -> f
| f, Add(g, h) -> f +: g +: h
| f, g when f > g -> g +: f
| f, g -> Add(f, g) ;;
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Differentiation in OCaml: operations

We do the same for Mul:
(* Rules for multiplication *)
let rec ( *: ) f g = match f, g with

| Int n, Int m -> Int (n * m)
| Int 0, _ | _, Int 0 -> Int 0
| Int 1, f | f, Int 1 -> f
| f, Mul(g, h) -> f *: g *: h
| f, g when f > g -> g *: f
| f, g -> Mul(f, g) ;;
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Differentiation in OCaml: operations

Now sin
(
3x + 1

)
+ 2x can be written as

let x = Var("x") in
Sin(Int 3 *: x +: Int 1) +: Int 2 *: x

The OCaml compiler will translate it into
let x = Var("x") in

Add(Sin(Add(Mul(Int 3, x),
Int 1)),

Mul(Int 2, x))

(but now it’s able to do simplifications, e.g.,
multiplying by 1).
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Differentiation in OCaml: the core

This is the implementation of d, the differential
operator.
let rec d f x = match f with

| Var y when x=y -> Int 1
| Var _ | Int _ -> Int 0
| Add(f, g) -> d f x +: d g x
| Mul(f, g) -> f *: d g x +: g *: d f x
| Sin(f) -> Cos(f) *: d f x
| Cos(f) -> Int (-1) *: Sin(f) *: d f x ;;
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Pretty-printing

open Format;;
let rec print_expr ff = function

| Int n -> fprintf ff "%d" n
| Var v -> fprintf ff "%s" v
| Sin(f) -> fprintf ff "sin(%a)" print_expr f
| Cos(f) -> fprintf ff "cos(%a)" print_expr f
| Add(f, g) -> fprintf ff "%a +@;<1 2>%a"

print_expr f print_expr g
| Mul(Add _ as f, g) ->

fprintf ff "(@[%a@])@;<1 2>%a"
print_expr f print_expr g

| Mul(f, g) -> fprintf ff "%a@;<1 2>%a"
print_expr f print_expr g;;

#install_printer print_expr;;

(Run these commands at the OCaml prompt.)
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Example

Run this at the OCaml prompt (#):
# let a = Var "a"

and b = Var "b"
and c = Var "c"
and x = Var "x" ;;

# let expr = a*:x*:x +: b*:x +: x*:Sin(Int 2 *: x)
# expr ;;
- : expr = a x x + b x + x sin(2 x)
# d expr "x" ;;
- : expr = a x + a x + b + 2 x cos(2 x) + sin(2 x)

Dx
(
ax2+bx+x sin 2x

)
= 2ax+b+2x cos 2x+sin 2x .
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Lessons learned

To recap:
We specify the algorithm (derivation)
symbolically;
We specify how to perform optimizations on the
expressions;
We translate one symbolic expression (function
to be derived) into another one (derivative).
(This required 27 lines of code!)
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How does this apply to FFTW?

FFTW uses the same idea to manipulate FT
algorithms:

Define a data type (like our expr) that
represents a Fourier Transform;
Define a function, called genfft, that
transforms such data types (like our function d);
The output of genfft is a stream of characters
which make the source code of a set of C
functions.
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The workflow of genfft

Set of algorithms (OCaml) N

genfft

R, →,
single

R, ←,
single

R, →,
double R, ←,

double
C, →,
single

C, ←,
single

C, →,
double

C, ←,
double
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Example: Cooley-Tukey

The formula:

y [i1+i2n1] =

n2−1∑
j2=0

n1−1∑
j1=0

x [j1n2 + j2]ω
−i1j1
n1

ω−i1j2
n

ω−i2j2
n2

The code passed as input to genfft:
let rec cooley_tukey n1 n2 input sign =
let tmp1 j2 = fftgen n1

(fun j1 -> input (j1 * n2 + j2)) sign in
let tmp2 i1 j2 =

exp n (sign * i1 * j2) @* tmp1 j2 i1)) in
let tmp3 i1 = fftgen n2 (tmp2 i1) sign in

(fun i -> tmp3 (i mod n1) (i / n1)) ;;
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Example output from genfft (1/2)

/* This function contains 4 FP additions,

* 0 FP multiplications, (or, 4 additions,

* 0 multiplications, 0 fused multiply/add),

* 5 stack variables, 0 constants, and 8

* memory accesses */
void n1_2(const R *ri, const R *ii, R *ro, R *io,

stride is, stride os, INT v, INT ivs,
INT ovs) {

INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs,

ii = ii + ivs, ro = ro + ovs, io = io + ovs,
MAKE_VOLATILE_STRIDE(is),
MAKE_VOLATILE_STRIDE(os)) {

E T1, T2, T3, T4;
T1 = ri[0];
T2 = ri[WS(is, 1)];
/* (continue...) */
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Example output from genfft (2/2)

T3 = ii[0];
T4 = ii[WS(is, 1)];
ro[0] = T1 + T2;
ro[WS(os, 1)] = T1 - T2;
io[0] = T3 + T4;
io[WS(os, 1)] = T3 - T4;

}
}
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Imperative vs. functional

Imperative machine
Turing’s work:
1936-37
First high-level
language: Fortran
(1954)
C/C++, C#, Pascal,
Ada, Python. . .

λ-calculus
Church’s papers:
1933, 1935
First language:
LISP (1958)
OCaml, Haskell,
Scala, F#. . .

The two concepts are equivalent. See

http://www.infoq.com/presentations/Y-Combinator.
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Project Euler’s Problem 34

Quiz: write the sum of all the numbers n between 10
and 107 that are equal to the factorials of their digits
(e.g., 145 = 1! + 4! + 5!).

(The answer is 40 730.)
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Problem 34 in Python

def fact(n):
if n < 2: return 1
else:

result = 1
for i in xrange(2, n + 1): result = result * i
return result

FAST_FACT = tuple ([fact(x) for x in xrange(0, 10)])

def digits (n):
return [int(x) for x in list(str(n))]

def test_number (n):
return n == sum([FAST_FACT[digit]

for digit in digits(n)])

print sum([num for num in xrange(10, 10000000)
if test_number(num)])
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Problem 34 in OCaml (1/2)

(* Array with the factorials of the 10 digits *)
let fact =

let rec f n = if n > 1 then n * f (n-1) else 1
in Array.map f [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9|];;

let sum list_of_nums =
List.fold_left (+) 0 list_of_nums;;

(* Return a list with the digits of ‘num’ *)
let digits num =
let rec f num result =

if num < 10 then num :: result
else f (num / 10) ((num mod 10) :: result)

in f num [];;

let test_number num =
num == sum (List.map (fun x->fact.(x)) (digits num)));;
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Problem 34 in OCaml (2/2)

let calc_sum max =
let rec helper start cumul =
if start >= max then

cumul
else

(* Tail call *)
helper (start + 1)

(if test_number start then
(cumul + start)

else
cumul)

in helper 10 0 ;;

print_endline (string_of_int (calc_sum 10000000));
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Problem 34 in Haskell

-- File problem-34.hs
--
-- Compile it with
-- ghc -o problem-34 problem-34.hs

import Data.Char (digitToInt)

main = print (sum ([x|x <- [10..100000],
x == sum (map (\n -> product [1..n])

(map (digitToInt)
(show x)))]))
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Benchmarks

Language LOC Running time
Python 18 59.0 s
OCaml 27 2.7 s
Haskell 6 0.2 s

Haskell is 300 times faster than Python and three
times more concise.
In this example OCaml is more verbose than Python,
but still much faster.
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