The secrets of FFTW: the Fastest Fourier Transform in the West

Tomasi Maurizio

INAF
January, 2012

What is FFTW?

"FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST)."
http://www.fftw.org/

Part I

The Fourier Transform

Benchmarks

The Fourier transform

Discrete FT formula $x \rightarrow y$:

$$
y[i]=\sum_{j=0}^{n-1} x[j] \omega_{n}^{-i j}
$$

with $\omega_{n}=e^{2 \pi i / n}$. This is a $O\left(N^{2}\right)$ algorithm, which means it does not scale well.

The Fast Fourier transform

In 1965 Cooley and Turkey proved that if $n=n_{1} n_{2}$ then
$y\left[i_{1}+i_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1}\left[\left(\sum_{j_{1}=0}^{n_{1}-1} x\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1}}^{-i_{1} j_{1}}\right) \omega_{n}^{-i_{1} j_{2}}\right] \omega_{n_{2}}^{-i_{2} j_{2}}$
yields the same results.

The Fast Fourier transform

In 1965 Cooley and Turkey proved that if $n=n_{1} n_{2}$ then
$y\left[i_{1}+i_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1}\left[\left(\sum_{j_{1}=0}^{n_{1}-1} x\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1}}^{-i_{1} j_{1}}\right) \omega_{n}^{-i_{1} j_{2}}\right] \omega_{n_{2}}^{-i_{2} j_{2}}$
yields the same results.
Since the inner sum is a DFT, the procedure can be recursive. If $N=2^{k}$, then the algorithm is
$O(N \log N)$.

The Fast Fourier transform

Cool! Our problems are solved!

The Fast Fourier transform

Cool! Our problems are solved!

Not so fast, mister...

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can use:

1 Cooley-Tuckey's algorithm (if $n=n_{1} n_{2}$);

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can use:

1 Cooley-Tuckey's algorithm (if $n=n_{1} n_{2}$);
2 Cooley-Tuckey's prime factor algorithm (as above, but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$);

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can use:

1 Cooley-Tuckey's algorithm (if $n=n_{1} n_{2}$);
2 Cooley-Tuckey's prime factor algorithm (as above, but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$);
${ }_{3}$ Split-radix algorithm (if n is a multiple of 4);

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can use:

1 Cooley-Tuckey's algorithm (if $n=n_{1} n_{2}$);
2 Cooley-Tuckey's prime factor algorithm (as above, but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$;
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader's algorithm (if n is prime);

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can use:

1 Cooley-Tuckey's algorithm (if $n=n_{1} n_{2}$);
2 Cooley-Tuckey's prime factor algorithm (as above, but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader's algorithm (if n is prime);
5 Plain definition of the FT (any n)

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can use:

1 Cooley-Tuckey's algorithm (if $n=n_{1} n_{2}$);
2 Cooley-Tuckey's prime factor algorithm (as above, but $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader's algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 ... and many others!

Problems in writing a FFT library (2/4)

Need to support:
1 Real and complex data
2 Single precision and double precision
3 Forward (\rightarrow) and backward (\leftarrow) transforms
Thus, $2^{3}=8$ combinations for each algorithm you
want to implement.

Problems in writing a FFT library (2/4)

Need to support:
1 Real and complex data
\approx Single precision and double precision
3 Forward (\rightarrow) and backward (\leftarrow) transforms
Thus, $2^{3}=8$ combinations for each algorithm you
want to implement.
(And this does not consider multidimensional transforms...)

Problems in writing a FFT library (3/4)

Sometimes you can rewrite a mathematical formula in a way that is computationally more efficient, e.g.:

$$
y=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

(10 multiplications, 4 additions) can be rewritten as

$$
y=x(x(x(a x+b)+c)+d)+e
$$

(4 multiplications, 4 additions).

Problems in writing a FFT library (3/4)

Sometimes you can rewrite a mathematical formula in a way that is computationally more efficient, e.g.:

$$
y=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

(10 multiplications, 4 additions) can be rewritten as

$$
y=x(x(x(a x+b)+c)+d)+e
$$

(4 multiplications, 4 additions). Again, you have to do this optimization for all the algorithms/variants you want to implement!

Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on some CPU, and vice versa on a different architecture.

Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on some CPU, and vice versa on a different architecture.

For instance, an algorithm requires 3 sums and 2 multiplications, another one 5 sums and 1 multiplication. Which one do you choose?

Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on some CPU, and vice versa on a different architecture.

For instance, an algorithm requires 3 sums and 2 multiplications, another one 5 sums and 1 multiplication. Which one do you choose?

This applies to FFT, as e.g., if $N=24$ you can either use Cooley-Tuckey (since $N=3 \times 2^{3}$) or the split-radix algorithm (since $N=4 n$).

1 One definition of FT, but many algorithms and ways of coding them.
2 Each one must be optimized;
${ }_{3}$ Not clear which one is the best if you do not know a priori the architecture you're going to run your program on.

Part II

FFTW's approach

Problems and solutions

1. One definition of FT, but many algorithms and ways of coding them.
2. Each one must be optimized;
${ }_{3}$ Not clear which one is the best. . .

Problems and solutions

11 One definition of FT, but many algorithms and ways of coding them. \rightarrow Specify the algorithms in some high-level language, then automatically translate them.
2. Each one must be optimized;
${ }_{3}$ Not clear which one is the best...

Problems and solutions

II One definition of FT, but many algorithms and ways of coding them. \rightarrow Specify the algorithms in some high-level language, then automatically translate them.
© Each one must be optimized; \rightarrow Make an optimizing compiler do the translation.
${ }_{3}$ Not clear which one is the best. . .

Problems and solutions

-1 One definition of FT, but many algorithms and ways of coding them. \rightarrow Specify the algorithms in some high-level language, then automatically translate them.
■ Each one must be optimized; \rightarrow Make an optimizing compiler do the translation.
${ }_{3}$ Not clear which one is the best. . . \rightarrow Profile each algorithm at runtime, before actually using the library (create a plan).

FT algorithms in FFTW

FFTW specifies FT algorithms using OCaml (http://www.ocaml.org), a high-level functional language with some neat features.

Example in OCaml

To see how the features of OCaml can be useful for writing FT algorithms, we'll first show how to solve a simple problem using OCaml:

How would you write a function that calculates derivatives?

Differentiation in C

```
/* derivative.c
    cc -o derivative derivative.c -lm */
#include <float.h>
#include <math.h>
#include <stdio.h>
```

typedef double fn_t (double);
double derivative(fn_t * f, double x)
\{
const double eps = 1e-6;
return ((*f) (x + eps) - (*f) (x)) / eps;
\}
void main(void)
\{
printf("The derivative of $\cos (x)$ in $x=1$ is \%f\n",
derivative(cos, 1));
\}

Differentiation in OCaml

```
(* derivative.ml
    ocamlopt -o derivative derivative.ml *)
    (* There's no need to specify types,
    as the compiler will infer them *)
let derivative f x =
    let eps = 1e-6
    in (f (x +. eps) -. f x) /. eps;;
Printf.printf "The derivative of cos(x) in x=1 is %f\n"
    (derivative cos 1.0);;
```


Differentiation: improvements

Can we do better?

Differentiation: improvements

Computing the derivative symbolically would make us safe from rounding errors (why using 10^{-6} for eps instead of 10^{-8} ?).

Differentiation: improvements

Computing the derivative symbolically would make us safe from rounding errors (why using 10^{-6} for eps instead of 10^{-8} ?).

It would also allow to make a few optimizations, e.g.:

```
double function(double x)
{
```

```
double constant = extremely_slow_function();
```

double constant = extremely_slow_function();
return x + constant;

```
    return x + constant;
```


Differentiation: improvements

Computing the derivative symbolically would make us safe from rounding errors (why using 10^{-6} for eps instead of 10^{-8} ?).

It would also allow to make a few optimizations, e.g.:

```
double function(double x)
{
```

```
double constant = extremely_slow_function();
```

double constant = extremely_slow_function();
return x + constant;
return x + constant;
}

```

However, it is extremely hard to do this in C/C++/Python. . . .

\section*{Differentiation in OCaml: expressions}

Let's see how to do this in OCaml. We'll follow a tutorial by Jon Harrop, the author of "OCaml for Scientists"
http://www.ffconsultancy.com/ocaml/benefits/symbolic.html.

To compute a derivative, we need to know the inner structure of a function;
- To compute a derivative, we need to know the inner structure of a function;
\(\square\) But a C/OCaml function like sin is a \(\mathbb{R} \rightarrow \mathbb{R}\) "black box";
- To compute a derivative, we need to know the inner structure of a function;
\(\square\) But a C/OCaml function like sin is a \(\mathbb{R} \rightarrow \mathbb{R}\) "black box";
■ We therefore need to specify functions symbolically, by means of an ad-hoc type;

■ To compute a derivative, we need to know the inner structure of a function;
■ But a C/OCaml function like sin is a \(\mathbb{R} \rightarrow \mathbb{R}\) "black box";
■ We therefore need to specify functions symbolically, by means of an ad-hoc type;
\(\square\) We need to define some mathematical operators on this type, as well as their properties;
- To compute a derivative, we need to know the inner structure of a function;
■ But a C/OCaml function like sin is a \(\mathbb{R} \rightarrow \mathbb{R}\) "black box";
■ We therefore need to specify functions symbolically, by means of an ad-hoc type;
- We need to define some mathematical operators on this type, as well as their properties;
- Last but not least, we need to specify how to compute derivatives!

\section*{Differentiation in OCaml: expressions}
type expr \(=\)
| Add of expr * expr (* Sum of two expressions *) Mul of expr * expr (* Product of two expressions *) Int of int (* Integer constant *) Var of string (* Named variable, like "X" *) Sin of expr (* Sine *)
| Cos of expr i ; (* Cosine *)

\section*{Differentiation in OCaml: expressions}
type expr \(=\)
```

 Add of expr * expr (* Sum of two expressions *)
 Mul of expr * expr (* Product of two expressions *)
 Int of int (* Integer constant *)
 Var of string (* Named variable, like "x" *)
 Sin of expr (* Sine *)
 | Cos of expr ; ; (* Cosine *)
    ```

\section*{Example: \(\sin (3 x+1)+2 x\) becomes}
let \(x=\operatorname{Var}(" x\) ") in
Add (Sin (Add (Mul (Int 3, \(x\) ), Int 1)),
Mul(Int 2, x))

\title{
Differentiation in OCaml: operations
}

\section*{Defining expressions in this way is boring!}

\section*{Differentiation in OCaml: operations}

Defining expressions in this way is boring! We define a nice shorthand for Add by defining a new mathematical operator, + : , and using OCaml's powerful pattern matching:
```

let rec (+:) f g = match f, g with
| Int n, Int m -> Int (n + m)
Int 0, f | f, Int 0 -> f
f, Add(g, h) -> f +: g +: h
| f, g when f > g -> g +: f
|, g -> Add(f, g) ; ;

```

\section*{Differentiation in OCaml: operations}

\section*{We do the same for Mul:}
```

(* Rules for multiplication *)
let rec (*:) f g = match f, g with
Int n, Int m -> Int (n * m)
Int 0, _ | _, Int 0 -> Int 0
Int 1, f | f, Int 1 -> f
f, Mul(g, h) -> f *: g *: h
f,g when f > g -> g *: f
f, g -> Mul(f, g) ; ;

```

\section*{Differentiation in OCaml: operations}

Now \(\sin (3 x+1)+2 x\) can be written as
let \(\mathrm{x}=\operatorname{Var}(\mathrm{x} \mathrm{x}\) ") in
\(\operatorname{Sin}(\) Int \(3 \times: \mathrm{x}+: \operatorname{Int} 1)+: \operatorname{Int} 2 \times: \mathrm{x}\)
The OCaml compiler will translate it into
```

let x = Var("x") in
Add(Sin(Add(Mul(Int 3, x),
Int 1)),
Mul(Int 2, x))

```
(but now it's able to do simplifications, e.g., multiplying by 1 ).

\title{
Differentiation in OCaml: the core
}

\section*{This is the implementation of \(d\), the differential operator.}
```

let rec d f x = match f with
Var y when x=y -> Int 1
Var _ | Int _ -> Int 0
Add(f, g) -> d f x +: d g x
Mul(f, g) -> f *: d g x +: g *: d f x
| Sin(f) -> Cos(f) *: d f x
Cos(f) -> Int (-1) *: Sin(f) *: d f x ; ;

```

\section*{Pretty-printing}
```

open Format;;
let rec print_expr ff = function
Int n -> fprintf ff "%d" n
Var v -> fprintf ff "%s" v
Sin(f) -> fprintf ff "sin(%a)" print_expr f
Cos(f) -> fprintf ff "Cos(%a)" print_expr f
Add(f, g) -> fprintf ff "%a +@;<1 2>%a"
print_expr f print_expr g
Mul (Add _ as f, g) ->
fprintf ff "(@[%a@])@;<1 2>%a"
print_expr f print_expr g
Mul(f, g) -> fprintf ff "%a@;<1 2>%a"
print_expr f print_expr g;;
\#install_printer print_expr;;

```
(Run these commands at the OCaml prompt.)

\section*{Example}

\section*{Run this at the OCaml prompt (\#):}
```

\# let
a = Var "a"
and $\mathrm{b}=$ Var "b"
and $c=$ Var "c"
and $\mathrm{x}=\operatorname{Var}$ "x" ; ;
\# let expr $=a *: x *: x+: b *: x+: x *: \operatorname{Sin}(\operatorname{Int} 2 *: x)$
\# expr ; ;
$-\quad$ expr $=a x x+b x+x \sin (2 x)$
\# d expr "x" ; ;

- : expr $=\mathrm{a} x+\mathrm{a} x+b+2 \mathrm{x} \cos (2 \mathrm{x})+\sin (2 \mathrm{x})$

```
\(D_{x}\left(a x^{2}+b x+x \sin 2 x\right)=2 a x+b+2 x \cos 2 x+\sin 2 x\).

\section*{Lessons learned}

\section*{To recap:}
\(\square\) We specify the algorithm (derivation) symbolically;
- We specify how to perform optimizations on the expressions;
- We translate one symbolic expression (function to be derived) into another one (derivative).
■ (This required 27 lines of code!)

\section*{How does this apply to FFTW?}

FFTW uses the same idea to manipulate FT algorithms:

■ Define a data type (like our expr) that represents a Fourier Transform;
- Define a function, called genfft, that transforms such data types (like our function d);
■ The output of genfft is a stream of characters which make the source code of a set of \(C\) functions.

\section*{The workflow of genfft}


\section*{The workflow of genfft}


\section*{Example: Cooley-Tukey}

\section*{The formula:}
\(y\left[i_{1}+i_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1}\left[\left(\sum_{j_{1}=0}^{n_{1}-1} x\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1}}^{-i_{1} j_{1}}\right) \omega_{n}^{-i_{1} j_{2}}\right] \omega_{n_{2}}^{-i_{2} j_{2}}\)
The code passed as input to genfft:
let rec cooley_tukey n1 n2 input sign =
let tmp1 j2 \(=\) fftgen \(n 1\)
(fun j1 -> input (j1 * n2 + j2)) sign in
let tmp2 i1 j2 =
exp n (sign * i1 * j2) @* tmp1 j2 i1)) in
let tmp3 il \(=\) fftgen \(n 2\) (tmp2 il) sign in
(fun i \(->\) tmp3 (i mod n1) (i / n1)) ; ;

\section*{Example output from genfft (1/2)}
```

/* This function contains 4 FP additions,
* O FP multiplications, (or, 4 additions,
* O multiplications, O fused multiply/add),
* 5 stack variables, 0 constants, and 8
* memory accesses */

```
void n1_2(const R *ri, const \(R\) *ii, \(R\) *ro, \(R\) *io,
    stride is, stride os, INT v, INT ivs,
    INT ovs) \{
INT i;
for (i \(=v ; i>0 ; i=i \quad-1, r i=r i+i v s\),
    ii = ii + ivs, ro = ro + ovs, io = io + ovs,
    MAKE_VOLATILE_STRIDE (is),
    MAKE_VOLATILE_STRIDE(os)) \{
    E T1, T2, T3, T4;
    T1 = ri[0];
    T2 = ri[WS(is, 1)];
    /* (continue...) */

\section*{Example output from genfft (2/2)}
```

T3 = ii[0];
T4 = ii[WS(is, 1)];
ro[0] = T1 + T2;
ro[WS(os, 1)] = T1 - T2;
io[0] = T3 + T4;
io[WS(OS, 1)] = T3 - T4;

```
\}
\}

\section*{References}
\(\square\) M. Frigo, A Fast Fourier Transform Compiler. Proceedings of the 1999 ACM SIGPLAN (May 1999).
\(\square\) M. Frigo, The Design and Implementation of FFTW3, Proceedings of the IEEE 93 (2), 216231 (2005)
■ The OCaml website, http: / /ocaml.org.
- J. Harrop, OCaml for scientists, http://www.ffconsultancy.com/ products/ocaml_for_scientists.

\section*{Imperative vs. functional}

\section*{Imperative machine}

■ Turing's work: 1936-37
■ First high-level language: Fortran (1954)

■ C/C++, C\#, Pascal, Ada, Python. .

\section*{\(\lambda\)-calculus}
- Church's papers: 1933, 1935
- First language: LISP (1958)
OCaml, Haskell, Scala, F\#...

The two concepts are equivalent. See
http://www.infoq.com/presentations/Y-Combinator.

\section*{Project Euler's Problem 34}

Quiz: write the sum of all the numbers \(n\) between 10 and \(10^{7}\) that are equal to the factorials of their digits (e.g., \(145=1!+4!+5\) !).

\section*{Project Euler's Problem 34}

Quiz: write the sum of all the numbers \(n\) between 10 and \(10^{7}\) that are equal to the factorials of their digits (e.g., \(145=1!+4!+5\) !).
(The answer is 40730 .)

\section*{Problem 34 in Python}
def fact(n):
if \(n<2:\) return 1
else:
result \(=1\)
for \(i\) in xrange \((2, n+1)\) result \(=r e s u l t * i\) return result

FAST_FACT \(=\) tuple ([fact \((x)\) for \(x\) in xrange (0, 10)])
def digits (n):
return [int(x) for \(x\) in list(str(n))]
def test_number (n):
return \(\mathrm{n}=\) = sum([FAST_FACT[digit]
```

for digit in digits(n)])

```
print sum([num for num in xrange (10, 10000000)
if test_number (num)])

\section*{Problem 34 in OCaml (1/2)}
(* Array with the factorials of the 10 digits *)
let fact \(=\)
let rec \(\mathrm{f} n=\) if \(\mathrm{n}>1\) then \(\mathrm{n} * \mathrm{f}(\mathrm{n}-1)\) else 1
in Array.map \(f\) [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9|]; ;
let sum list_of_nums =
List.fold_left (+) 0 list_of_nums; ;
(* Return a list with the digits of 'num' *)
let digits num \(=\)
let rec \(f\) num result \(=\)
if num < 10 then num : : result
else f (num / 10) ((num mod 10) : : result)
in f num [];
let test_number num = num \(==\) sum (List.map (fun \(x->f a c t .(x))\) (digits num))); ;

\section*{Problem 34 in OCaml (2/2)}
```

let calc_sum max =
let rec helper start cumul =
if start >= max then
cumul
else
(* Tail call *)
helper (start + 1)
(if test_number start then
(cumul + start)
else
cumul)
in helper 10 0 ;;
print_endline (string_of_int (calc_sum 10000000));

```

\section*{Problem 34 in Haskell}

> -- File problem-34.hs
- -
-- Compile it with
-- ghc -o problem-34 problem-34.hs
import Data.Char (digitToInt)


\section*{Benchmarks}

\section*{Language LOC Running time \\ Python 18 59.0 s \\ OCaml \\ \(27 \quad 2.7 \mathrm{~s}\) \\ Haskell 6 0.2 s}

\section*{Benchmarks}

> \begin{tabular}{lcl} 
> Language & LOC & Running time \\
> \hline Python & 18 & 59.0 s \\
> OCaml & 27 & 2.7 s \\
> Haskell & 6 & 0.2 s
> \end{tabular}

Haskell is 300 times faster than Python

\section*{Benchmarks}

> \begin{tabular}{lcl}  Language & LOC & Running time \\ \hline Python & 18 & 59.0 s \\ OCaml & 27 & 2.7 s \\ Haskell & 6 & 0.2 s \end{tabular}

Haskell is 300 times faster than Python and three times more concise.

\section*{Benchmarks}

> \begin{tabular}{lcl} 
> Language & LOC & Running time \\
> \hline Python & 18 & 59.0 s \\
> OCaml & 27 & 2.7 s \\
> Haskell & 6 & 0.2 s
> \end{tabular}

Haskell is 300 times faster than Python and three times more concise.
In this example OCaml is more verbose than Python, but still much faster.```

