
The secrets of FFTW: the Fastest
Fourier Transform in the West

Tomasi Maurizio

INAF

January, 2012

Tomasi M. (INAF) The secrets of FFTW January, 2012 1 / 36

What is FFTW?

“FFTW is a C subroutine library for computing the
discrete Fourier transform (DFT) in one or more
dimensions, of arbitrary input size, and of both real
and complex data (as well as of even/odd data, i.e.
the discrete cosine/sine transforms or DCT/DST).”

http://www.fftw.org/

Tomasi M. (INAF) The secrets of FFTW January, 2012 2 / 36

http://www.fftw.org/

Part I

The Fourier Transform

Tomasi M. (INAF) The secrets of FFTW January, 2012 3 / 36

Benchmarks

Tomasi M. (INAF) The secrets of FFTW January, 2012 4 / 36

The Fourier transform

Discrete FT formula x → y :

y [i] =
n−1∑
j=0

x [j]ω−ij
n ,

with ωn = e2πi/n. This is a O(N2) algorithm, which
means it does not scale well.

Tomasi M. (INAF) The secrets of FFTW January, 2012 5 / 36

The Fast Fourier transform

In 1965 Cooley and Turkey proved that if n = n1n2
then

y [i1+i2n1] =

n2−1∑
j2=0

 n1−1∑
j1=0

x [j1n2 + j2]ω
−i1j1
n1

ω−i1j2
n

ω−i2j2
n2

yields the same results.

Since the inner sum is a DFT, the procedure can be
recursive. If N = 2k , then the algorithm is
O(N log N).

Tomasi M. (INAF) The secrets of FFTW January, 2012 6 / 36

The Fast Fourier transform

In 1965 Cooley and Turkey proved that if n = n1n2
then

y [i1+i2n1] =

n2−1∑
j2=0

 n1−1∑
j1=0

x [j1n2 + j2]ω
−i1j1
n1

ω−i1j2
n

ω−i2j2
n2

yields the same results.
Since the inner sum is a DFT, the procedure can be
recursive. If N = 2k , then the algorithm is
O(N log N).

Tomasi M. (INAF) The secrets of FFTW January, 2012 6 / 36

The Fast Fourier transform

Cool! Our problems are solved!

Not so fast, mister. . .

Tomasi M. (INAF) The secrets of FFTW January, 2012 7 / 36

The Fast Fourier transform

Cool! Our problems are solved!

Not so fast, mister. . .

Tomasi M. (INAF) The secrets of FFTW January, 2012 7 / 36

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);

2 Cooley-Tuckey’s prime factor algorithm (as
above, but gcd(n1,n2) = 1);

3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);

3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);

4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);

5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)

6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36

Problems in writing a FFT library (1/4)

To compute the FT of a vector of n elements you can
use:

1 Cooley-Tuckey’s algorithm (if n = n1n2);
2 Cooley-Tuckey’s prime factor algorithm (as

above, but gcd(n1,n2) = 1);
3 Split-radix algorithm (if n is a multiple of 4);
4 Rader’s algorithm (if n is prime);
5 Plain definition of the FT (any n)
6 . . . and many others!

Tomasi M. (INAF) The secrets of FFTW January, 2012 8 / 36

Problems in writing a FFT library (2/4)

Need to support:
1 Real and complex data
2 Single precision and double precision
3 Forward (→) and backward (←) transforms

Thus, 23 = 8 combinations for each algorithm you
want to implement.

(And this does not consider multidimensional
transforms. . .)

Tomasi M. (INAF) The secrets of FFTW January, 2012 9 / 36

Problems in writing a FFT library (2/4)

Need to support:
1 Real and complex data
2 Single precision and double precision
3 Forward (→) and backward (←) transforms

Thus, 23 = 8 combinations for each algorithm you
want to implement.
(And this does not consider multidimensional
transforms. . .)

Tomasi M. (INAF) The secrets of FFTW January, 2012 9 / 36

Problems in writing a FFT library (3/4)

Sometimes you can rewrite a mathematical formula
in a way that is computationally more efficient, e.g.:

y = ax4 + bx3 + cx2 + dx + e

(10 multiplications, 4 additions) can be rewritten as

y = x(x(x(ax + b) + c) + d) + e

(4 multiplications, 4 additions).

Again, you have to do
this optimization for all the algorithms/variants you
want to implement!

Tomasi M. (INAF) The secrets of FFTW January, 2012 10 / 36

Problems in writing a FFT library (3/4)

Sometimes you can rewrite a mathematical formula
in a way that is computationally more efficient, e.g.:

y = ax4 + bx3 + cx2 + dx + e

(10 multiplications, 4 additions) can be rewritten as

y = x(x(x(ax + b) + c) + d) + e

(4 multiplications, 4 additions). Again, you have to do
this optimization for all the algorithms/variants you
want to implement!

Tomasi M. (INAF) The secrets of FFTW January, 2012 10 / 36

Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on
some CPU, and vice versa on a different
architecture.

For instance, an algorithm requires 3 sums and 2
multiplications, another one 5 sums and 1
multiplication. Which one do you choose?

This applies to FFT, as e.g., if N = 24 you can either
use Cooley-Tuckey (since N = 3× 23) or the
split-radix algorithm (since N = 4n).

Tomasi M. (INAF) The secrets of FFTW January, 2012 11 / 36

Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on
some CPU, and vice versa on a different
architecture.

For instance, an algorithm requires 3 sums and 2
multiplications, another one 5 sums and 1
multiplication. Which one do you choose?

This applies to FFT, as e.g., if N = 24 you can either
use Cooley-Tuckey (since N = 3× 23) or the
split-radix algorithm (since N = 4n).

Tomasi M. (INAF) The secrets of FFTW January, 2012 11 / 36

Problems in writing a FFT library (4/4)

One algorithm can be more efficient than another on
some CPU, and vice versa on a different
architecture.

For instance, an algorithm requires 3 sums and 2
multiplications, another one 5 sums and 1
multiplication. Which one do you choose?

This applies to FFT, as e.g., if N = 24 you can either
use Cooley-Tuckey (since N = 3× 23) or the
split-radix algorithm (since N = 4n).

Tomasi M. (INAF) The secrets of FFTW January, 2012 11 / 36

To recap

1 One definition of FT, but many algorithms and
ways of coding them.

2 Each one must be optimized;
3 Not clear which one is the best if you do not

know a priori the architecture you’re going to run
your program on.

Tomasi M. (INAF) The secrets of FFTW January, 2012 12 / 36

Part II

FFTW’s approach

Tomasi M. (INAF) The secrets of FFTW January, 2012 13 / 36

Problems and solutions

1 One definition of FT, but many algorithms and
ways of coding them.

→ Specify the algorithms
in some high-level language, then automatically
translate them.

2 Each one must be optimized;

→ Make an
optimizing compiler do the translation.

3 Not clear which one is the best. . .

→ Profile
each algorithm at runtime, before actually using
the library (create a plan).

Tomasi M. (INAF) The secrets of FFTW January, 2012 14 / 36

Problems and solutions

1 One definition of FT, but many algorithms and
ways of coding them. → Specify the algorithms
in some high-level language, then automatically
translate them.

2 Each one must be optimized;

→ Make an
optimizing compiler do the translation.

3 Not clear which one is the best. . .

→ Profile
each algorithm at runtime, before actually using
the library (create a plan).

Tomasi M. (INAF) The secrets of FFTW January, 2012 14 / 36

Problems and solutions

1 One definition of FT, but many algorithms and
ways of coding them. → Specify the algorithms
in some high-level language, then automatically
translate them.

2 Each one must be optimized;→ Make an
optimizing compiler do the translation.

3 Not clear which one is the best. . .

→ Profile
each algorithm at runtime, before actually using
the library (create a plan).

Tomasi M. (INAF) The secrets of FFTW January, 2012 14 / 36

Problems and solutions

1 One definition of FT, but many algorithms and
ways of coding them. → Specify the algorithms
in some high-level language, then automatically
translate them.

2 Each one must be optimized;→ Make an
optimizing compiler do the translation.

3 Not clear which one is the best. . .→ Profile
each algorithm at runtime, before actually using
the library (create a plan).

Tomasi M. (INAF) The secrets of FFTW January, 2012 14 / 36

FT algorithms in FFTW

FFTW specifies FT algorithms using OCaml
(http://www.ocaml.org), a high-level functional
language with some neat features.

Tomasi M. (INAF) The secrets of FFTW January, 2012 15 / 36

http://www.ocaml.org

Example in OCaml

To see how the features of OCaml can be useful for
writing FT algorithms, we’ll first show how to solve a
simple problem using OCaml:

How would you write a function that calculates
derivatives?

Tomasi M. (INAF) The secrets of FFTW January, 2012 16 / 36

Differentiation in C

/* derivative.c
cc -o derivative derivative.c -lm */

#include <float.h>
#include <math.h>
#include <stdio.h>

typedef double fn_t (double);
double derivative(fn_t * f, double x)
{

const double eps = 1e-6;
return ((*f)(x + eps) - (*f)(x)) / eps;

}

void main(void)
{

printf("The derivative of cos(x) in x=1 is %f\n",
derivative(cos, 1));

}
Tomasi M. (INAF) The secrets of FFTW January, 2012 17 / 36

Differentiation in OCaml

(* derivative.ml
ocamlopt -o derivative derivative.ml *)

(* There’s no need to specify types,
as the compiler will infer them *)

let derivative f x =
let eps = 1e-6
in (f (x +. eps) -. f x) /. eps;;

Printf.printf "The derivative of cos(x) in x=1 is %f\n"
(derivative cos 1.0);;

Tomasi M. (INAF) The secrets of FFTW January, 2012 18 / 36

Differentiation: improvements

Can we do better?

Tomasi M. (INAF) The secrets of FFTW January, 2012 19 / 36

Differentiation: improvements

Computing the derivative symbolically would make
us safe from rounding errors (why using 10−6 for eps
instead of 10−8?).

It would also allow to make a few optimizations, e.g.:
double function(double x)
{
double constant = extremely_slow_function();
return x + constant;

}

However, it is extremely hard to do this in
C/C++/Python. . . .

Tomasi M. (INAF) The secrets of FFTW January, 2012 20 / 36

Differentiation: improvements

Computing the derivative symbolically would make
us safe from rounding errors (why using 10−6 for eps
instead of 10−8?).

It would also allow to make a few optimizations, e.g.:
double function(double x)
{

double constant = extremely_slow_function();
return x + constant;

}

However, it is extremely hard to do this in
C/C++/Python. . . .

Tomasi M. (INAF) The secrets of FFTW January, 2012 20 / 36

Differentiation: improvements

Computing the derivative symbolically would make
us safe from rounding errors (why using 10−6 for eps
instead of 10−8?).

It would also allow to make a few optimizations, e.g.:
double function(double x)
{

double constant = extremely_slow_function();
return x + constant;

}

However, it is extremely hard to do this in
C/C++/Python. . . .

Tomasi M. (INAF) The secrets of FFTW January, 2012 20 / 36

Differentiation in OCaml: expressions

Let’s see how to do this in OCaml. We’ll follow a
tutorial by Jon Harrop, the author of ”OCaml for
Scientists”
http://www.ffconsultancy.com/ocaml/benefits/symbolic.html.

Tomasi M. (INAF) The secrets of FFTW January, 2012 21 / 36

http://www.ffconsultancy.com/ocaml/benefits/symbolic.html

The idea

To compute a derivative, we need to know the
inner structure of a function;

But a C/OCaml function like sin is a R→ R
“black box”;
We therefore need to specify functions
symbolically, by means of an ad-hoc type;
We need to define some mathematical
operators on this type, as well as their
properties;
Last but not least, we need to specify how to
compute derivatives!

Tomasi M. (INAF) The secrets of FFTW January, 2012 22 / 36

The idea

To compute a derivative, we need to know the
inner structure of a function;
But a C/OCaml function like sin is a R→ R
“black box”;

We therefore need to specify functions
symbolically, by means of an ad-hoc type;
We need to define some mathematical
operators on this type, as well as their
properties;
Last but not least, we need to specify how to
compute derivatives!

Tomasi M. (INAF) The secrets of FFTW January, 2012 22 / 36

The idea

To compute a derivative, we need to know the
inner structure of a function;
But a C/OCaml function like sin is a R→ R
“black box”;
We therefore need to specify functions
symbolically, by means of an ad-hoc type;

We need to define some mathematical
operators on this type, as well as their
properties;
Last but not least, we need to specify how to
compute derivatives!

Tomasi M. (INAF) The secrets of FFTW January, 2012 22 / 36

The idea

To compute a derivative, we need to know the
inner structure of a function;
But a C/OCaml function like sin is a R→ R
“black box”;
We therefore need to specify functions
symbolically, by means of an ad-hoc type;
We need to define some mathematical
operators on this type, as well as their
properties;

Last but not least, we need to specify how to
compute derivatives!

Tomasi M. (INAF) The secrets of FFTW January, 2012 22 / 36

The idea

To compute a derivative, we need to know the
inner structure of a function;
But a C/OCaml function like sin is a R→ R
“black box”;
We therefore need to specify functions
symbolically, by means of an ad-hoc type;
We need to define some mathematical
operators on this type, as well as their
properties;
Last but not least, we need to specify how to
compute derivatives!

Tomasi M. (INAF) The secrets of FFTW January, 2012 22 / 36

Differentiation in OCaml: expressions

type expr =
| Add of expr * expr (* Sum of two expressions *)
| Mul of expr * expr (* Product of two expressions *)
| Int of int (* Integer constant *)
| Var of string (* Named variable, like "x" *)
| Sin of expr (* Sine *)
| Cos of expr ;; (* Cosine *)

Example: sin
(
3x + 1

)
+ 2x becomes

let x = Var("x") in
Add(Sin(Add(Mul(Int 3, x),

Int 1)),
Mul(Int 2, x))

Tomasi M. (INAF) The secrets of FFTW January, 2012 23 / 36

Differentiation in OCaml: expressions

type expr =
| Add of expr * expr (* Sum of two expressions *)
| Mul of expr * expr (* Product of two expressions *)
| Int of int (* Integer constant *)
| Var of string (* Named variable, like "x" *)
| Sin of expr (* Sine *)
| Cos of expr ;; (* Cosine *)

Example: sin
(
3x + 1

)
+ 2x becomes

let x = Var("x") in
Add(Sin(Add(Mul(Int 3, x),

Int 1)),
Mul(Int 2, x))

Tomasi M. (INAF) The secrets of FFTW January, 2012 23 / 36

Differentiation in OCaml: operations

Defining expressions in this way is boring!

We define a nice shorthand for Add by defining a
new mathematical operator, +:, and using OCaml’s
powerful pattern matching:
let rec (+:) f g = match f, g with

| Int n, Int m -> Int (n + m)
| Int 0, f | f, Int 0 -> f
| f, Add(g, h) -> f +: g +: h
| f, g when f > g -> g +: f
| f, g -> Add(f, g) ;;

Tomasi M. (INAF) The secrets of FFTW January, 2012 24 / 36

Differentiation in OCaml: operations

Defining expressions in this way is boring!
We define a nice shorthand for Add by defining a
new mathematical operator, +:, and using OCaml’s
powerful pattern matching:
let rec (+:) f g = match f, g with

| Int n, Int m -> Int (n + m)
| Int 0, f | f, Int 0 -> f
| f, Add(g, h) -> f +: g +: h
| f, g when f > g -> g +: f
| f, g -> Add(f, g) ;;

Tomasi M. (INAF) The secrets of FFTW January, 2012 24 / 36

Differentiation in OCaml: operations

We do the same for Mul:
(* Rules for multiplication *)
let rec (*:) f g = match f, g with

| Int n, Int m -> Int (n * m)
| Int 0, _ | _, Int 0 -> Int 0
| Int 1, f | f, Int 1 -> f
| f, Mul(g, h) -> f *: g *: h
| f, g when f > g -> g *: f
| f, g -> Mul(f, g) ;;

Tomasi M. (INAF) The secrets of FFTW January, 2012 25 / 36

Differentiation in OCaml: operations

Now sin
(
3x + 1

)
+ 2x can be written as

let x = Var("x") in
Sin(Int 3 *: x +: Int 1) +: Int 2 *: x

The OCaml compiler will translate it into
let x = Var("x") in

Add(Sin(Add(Mul(Int 3, x),
Int 1)),

Mul(Int 2, x))

(but now it’s able to do simplifications, e.g.,
multiplying by 1).

Tomasi M. (INAF) The secrets of FFTW January, 2012 26 / 36

Differentiation in OCaml: the core

This is the implementation of d, the differential
operator.
let rec d f x = match f with

| Var y when x=y -> Int 1
| Var _ | Int _ -> Int 0
| Add(f, g) -> d f x +: d g x
| Mul(f, g) -> f *: d g x +: g *: d f x
| Sin(f) -> Cos(f) *: d f x
| Cos(f) -> Int (-1) *: Sin(f) *: d f x ;;

Tomasi M. (INAF) The secrets of FFTW January, 2012 27 / 36

Pretty-printing

open Format;;
let rec print_expr ff = function

| Int n -> fprintf ff "%d" n
| Var v -> fprintf ff "%s" v
| Sin(f) -> fprintf ff "sin(%a)" print_expr f
| Cos(f) -> fprintf ff "cos(%a)" print_expr f
| Add(f, g) -> fprintf ff "%a +@;<1 2>%a"

print_expr f print_expr g
| Mul(Add _ as f, g) ->

fprintf ff "(@[%a@])@;<1 2>%a"
print_expr f print_expr g

| Mul(f, g) -> fprintf ff "%a@;<1 2>%a"
print_expr f print_expr g;;

#install_printer print_expr;;

(Run these commands at the OCaml prompt.)
Tomasi M. (INAF) The secrets of FFTW January, 2012 28 / 36

Example

Run this at the OCaml prompt (#):
let a = Var "a"

and b = Var "b"
and c = Var "c"
and x = Var "x" ;;

let expr = a*:x*:x +: b*:x +: x*:Sin(Int 2 *: x)
expr ;;
- : expr = a x x + b x + x sin(2 x)
d expr "x" ;;
- : expr = a x + a x + b + 2 x cos(2 x) + sin(2 x)

Dx
(
ax2+bx+x sin 2x

)
= 2ax+b+2x cos 2x+sin 2x .

Tomasi M. (INAF) The secrets of FFTW January, 2012 29 / 36

Lessons learned

To recap:
We specify the algorithm (derivation)
symbolically;
We specify how to perform optimizations on the
expressions;
We translate one symbolic expression (function
to be derived) into another one (derivative).
(This required 27 lines of code!)

Tomasi M. (INAF) The secrets of FFTW January, 2012 30 / 36

How does this apply to FFTW?

FFTW uses the same idea to manipulate FT
algorithms:

Define a data type (like our expr) that
represents a Fourier Transform;
Define a function, called genfft, that
transforms such data types (like our function d);
The output of genfft is a stream of characters
which make the source code of a set of C
functions.

Tomasi M. (INAF) The secrets of FFTW January, 2012 31 / 36

The workflow of genfft

Set of algorithms (OCaml) N

genfft

R, →,
single

R, ←,
single

R, →,
double R, ←,

double
C, →,
single

C, ←,
single

C, →,
double

C, ←,
double

Tomasi M. (INAF) The secrets of FFTW January, 2012 32 / 36

The workflow of genfft

Set of algorithms (OCaml) N

genfft

R, →,
single

R, ←,
single

R, →,
double R, ←,

double
C, →,
single

C, ←,
single

C, →,
double

C, ←,
double

Tomasi M. (INAF) The secrets of FFTW January, 2012 32 / 36

Example: Cooley-Tukey

The formula:

y [i1+i2n1] =

n2−1∑
j2=0

n1−1∑
j1=0

x [j1n2 + j2]ω
−i1j1
n1

ω−i1j2
n

ω−i2j2
n2

The code passed as input to genfft:
let rec cooley_tukey n1 n2 input sign =
let tmp1 j2 = fftgen n1

(fun j1 -> input (j1 * n2 + j2)) sign in
let tmp2 i1 j2 =

exp n (sign * i1 * j2) @* tmp1 j2 i1)) in
let tmp3 i1 = fftgen n2 (tmp2 i1) sign in

(fun i -> tmp3 (i mod n1) (i / n1)) ;;

Tomasi M. (INAF) The secrets of FFTW January, 2012 33 / 36

Example output from genfft (1/2)

/* This function contains 4 FP additions,

* 0 FP multiplications, (or, 4 additions,

* 0 multiplications, 0 fused multiply/add),

* 5 stack variables, 0 constants, and 8

* memory accesses */
void n1_2(const R *ri, const R *ii, R *ro, R *io,

stride is, stride os, INT v, INT ivs,
INT ovs) {

INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs,

ii = ii + ivs, ro = ro + ovs, io = io + ovs,
MAKE_VOLATILE_STRIDE(is),
MAKE_VOLATILE_STRIDE(os)) {

E T1, T2, T3, T4;
T1 = ri[0];
T2 = ri[WS(is, 1)];
/* (continue...) */

Tomasi M. (INAF) The secrets of FFTW January, 2012 34 / 36

Example output from genfft (2/2)

T3 = ii[0];
T4 = ii[WS(is, 1)];
ro[0] = T1 + T2;
ro[WS(os, 1)] = T1 - T2;
io[0] = T3 + T4;
io[WS(os, 1)] = T3 - T4;

}
}

Tomasi M. (INAF) The secrets of FFTW January, 2012 35 / 36

References

M. Frigo, A Fast Fourier Transform Compiler.
Proceedings of the 1999 ACM SIGPLAN (May
1999).
M. Frigo, The Design and Implementation of
FFTW3, Proceedings of the IEEE 93 (2),
216231 (2005)
The OCaml website, http://ocaml.org.
J. Harrop, OCaml for scientists,
http://www.ffconsultancy.com/
products/ocaml_for_scientists.

Tomasi M. (INAF) The secrets of FFTW January, 2012 36 / 36

http://ocaml.org
http://www.ffconsultancy.com/products/ocaml_for_scientists
http://www.ffconsultancy.com/products/ocaml_for_scientists

Imperative vs. functional

Imperative machine
Turing’s work:
1936-37
First high-level
language: Fortran
(1954)
C/C++, C#, Pascal,
Ada, Python. . .

λ-calculus
Church’s papers:
1933, 1935
First language:
LISP (1958)
OCaml, Haskell,
Scala, F#. . .

The two concepts are equivalent. See

http://www.infoq.com/presentations/Y-Combinator.

Tomasi M. (INAF) The secrets of FFTW January, 2012 1 / 7

http://www.infoq.com/presentations/Y-Combinator

Project Euler’s Problem 34

Quiz: write the sum of all the numbers n between 10
and 107 that are equal to the factorials of their digits
(e.g., 145 = 1! + 4! + 5!).

(The answer is 40 730.)

Tomasi M. (INAF) The secrets of FFTW January, 2012 2 / 7

Project Euler’s Problem 34

Quiz: write the sum of all the numbers n between 10
and 107 that are equal to the factorials of their digits
(e.g., 145 = 1! + 4! + 5!).

(The answer is 40 730.)

Tomasi M. (INAF) The secrets of FFTW January, 2012 2 / 7

Problem 34 in Python

def fact(n):
if n < 2: return 1
else:

result = 1
for i in xrange(2, n + 1): result = result * i
return result

FAST_FACT = tuple ([fact(x) for x in xrange(0, 10)])

def digits (n):
return [int(x) for x in list(str(n))]

def test_number (n):
return n == sum([FAST_FACT[digit]

for digit in digits(n)])

print sum([num for num in xrange(10, 10000000)
if test_number(num)])

Tomasi M. (INAF) The secrets of FFTW January, 2012 3 / 7

Problem 34 in OCaml (1/2)

(* Array with the factorials of the 10 digits *)
let fact =

let rec f n = if n > 1 then n * f (n-1) else 1
in Array.map f [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9|];;

let sum list_of_nums =
List.fold_left (+) 0 list_of_nums;;

(* Return a list with the digits of ‘num’ *)
let digits num =
let rec f num result =

if num < 10 then num :: result
else f (num / 10) ((num mod 10) :: result)

in f num [];;

let test_number num =
num == sum (List.map (fun x->fact.(x)) (digits num)));;

Tomasi M. (INAF) The secrets of FFTW January, 2012 4 / 7

Problem 34 in OCaml (2/2)

let calc_sum max =
let rec helper start cumul =
if start >= max then

cumul
else

(* Tail call *)
helper (start + 1)

(if test_number start then
(cumul + start)

else
cumul)

in helper 10 0 ;;

print_endline (string_of_int (calc_sum 10000000));

Tomasi M. (INAF) The secrets of FFTW January, 2012 5 / 7

Problem 34 in Haskell

-- File problem-34.hs
--
-- Compile it with
-- ghc -o problem-34 problem-34.hs

import Data.Char (digitToInt)

main = print (sum ([x|x <- [10..100000],
x == sum (map (\n -> product [1..n])

(map (digitToInt)
(show x)))]))

Tomasi M. (INAF) The secrets of FFTW January, 2012 6 / 7

Benchmarks

Language LOC Running time
Python 18 59.0 s
OCaml 27 2.7 s
Haskell 6 0.2 s

Haskell is 300 times faster than Python and three
times more concise.
In this example OCaml is more verbose than Python,
but still much faster.

Tomasi M. (INAF) The secrets of FFTW January, 2012 7 / 7

Benchmarks

Language LOC Running time
Python 18 59.0 s
OCaml 27 2.7 s
Haskell 6 0.2 s

Haskell is 300 times faster than Python

and three
times more concise.
In this example OCaml is more verbose than Python,
but still much faster.

Tomasi M. (INAF) The secrets of FFTW January, 2012 7 / 7

Benchmarks

Language LOC Running time
Python 18 59.0 s
OCaml 27 2.7 s
Haskell 6 0.2 s

Haskell is 300 times faster than Python and three
times more concise.

In this example OCaml is more verbose than Python,
but still much faster.

Tomasi M. (INAF) The secrets of FFTW January, 2012 7 / 7

Benchmarks

Language LOC Running time
Python 18 59.0 s
OCaml 27 2.7 s
Haskell 6 0.2 s

Haskell is 300 times faster than Python and three
times more concise.
In this example OCaml is more verbose than Python,
but still much faster.

Tomasi M. (INAF) The secrets of FFTW January, 2012 7 / 7

	The Fourier Transform
	FFTW's approach
	Appendix

