Michela Rigoselli Astrosiesta 22/03/18

A new X-ray look into four old pulsars

Rotation-Powered Pulsars

- Lighthouse emission from radio to gamma
- Rotating neutron stars P = 1.5 ms - 10 s $\dot{P} = 10^{-18} - 10^{-12} \text{ s s}^{-1}$ characteristic age $\tau_c = P/2\dot{P}$
- Powered by rotational energy $\dot{E}_{rot} = d\left(\frac{1}{2}I\Omega^2\right)/dt = 4\pi^2 I\dot{P}P^{-3}$

$$\dot{E}_{\rm dip} = \frac{2}{3c^3} |\ddot{\mathbf{m}}|^2 \sim (B_{\rm dip}R^3P^{-2})^2$$

 $B_{\rm dip}~(0.1-5~{
m Myr})\sim 10^{12}~{
m G}$

Typical X-ray Spectrum

Old Pulsars X-ray Spectrum

Old Pulsars X-ray Spectrum

Old Pulsars X-ray Spectrum

The four Old Pulsars

PSR NAME	P s	P [•] 10 ⁻¹⁵ s s ⁻¹	B DIP 10 ¹² G	C. AGE Myr	COUNTS pn + MOS1/2
PSR B0114+58	0.10	5.85	0.8	0.3	~ 100
PSR B0919+06	0.43	13.73	2.5	0.5	~ 250
PSR B0628-28	1.24	7.12	3.0	3.0	~ 1 000
PSR B1133+16	1.19	3.73	2.1	5.0	~ 900

Maximum Likelihood Method

- Very dim sources
- It exploits the knowledge of the PSF and all the counts of the image: makes the best use of the statistics

Maximum Likelihood Method

(*x*,*y*,*t*) information: allows to separate pulsed from unpulsed counts \rightarrow two different spectra

PSR B0114+58

Spectrum fitted for the first time

Absorbed blackbody

 $kT = 0.17 \pm 0.02 \text{ keV}$ $R = 400 \pm 100 \text{ m}$

Power-law rejected

PSR B0919+06

Blackbody rejected

PSR B0919+06

PL+BB model

3σ upper limit on BB

PSR B0919+06

PL+BB model 3σ upper limit on BB $L_{\rm hol} < 2.4 \times 10^{29} \, {\rm erg \, s^{-1}}$

Best fit:

Absorbed power-law

 $\Gamma = 2.95 \pm 0.06$

Blackbody rejected

PL+BB model

3σ upper limit on BB

PL+BB model 3σ upper limit on BB $L_{\rm hol} < 3.2 \times 10^{28} \, {\rm erg \, s^{-1}}$

Best fit:

PL + 2 lines @ 0.22 and 0.44 keV

Best fit:

PL + 2 lines @ 0.22 and 0.44 keV

Harmonically spaced: cyclotron features due to protons

$$(B_{sup} \approx 5 \times 10^{13} \text{ G})$$
$$(B_{dip} \approx 2.1 \times 10^{12} \text{ G})$$

- PSR B0114+58 has a thermal emission from a hot spot
- PSR B0919+06 has a non-thermal emission and an upper limit on the bolometric luminosity
- PSR B0628-28 emission is mainly non-thermal, with a pulsed emission possibly thermal from a hot spot
- PSR B1133+16 spectrum is best described by a powerlaw plus 2 harmonically spaced lines, interpreted as cyclotron absorption lines

Polar Cap Temperature

Polar Cap Temperature

Polar Cap Radius

Polar Cap Radius

Conclusions

- ML method allows a better spectral analysis of faint sources
- Not all the old (0.1 < τ_c < 10 Myr) RPPs have a thermal emission from a hot spot...
- ...but when it is present, the emission area is consistent with the polar cap
- PSR B1133+16 is the second RPP that shows cyclotron absorption lines (PSR J1740+1000, Kargaltsev+ 2012)

The Effects of Polar Cap Heating

Thanks for Your Attention!!!

X-Ray Emission

Polar Caps Model

Harding & Muslimov 1998, 2001, 2002

 $E_{\prime\prime}$ accelerates particles until they emit photons and pairs in an avalance process

Accelerated charges towards us → **non-thermal emission**

Backflow particles \rightarrow heating of the polar caps \rightarrow **thermal emission**

Typical X-ray Spectra

Maximum Likelihood Method

Exploits the knowledge of the PSF and all the counts of the image: makes the best use of the statistics

In the pixel (*i*,*j*) the probability to **measure** N_{ii} counts is

$$P_{ij} = \frac{e^{-\mu_{ij}}\mu_{ij}^{N_{ij}}}{N_{ij}!}$$

where μ_{ij} is the **expectation** value for the pixel (*i*,*j*) and in this case corresponds to $\mu_{ij} = \sigma \cdot PSF_{ij} + \beta$

Maximum Likelihood Method

3D (*x*,*y*,*t*) approach: the expectation value of bin (*i*,*j*,*k*)

$$\mu_{ijk} = (\boldsymbol{\sigma}_u + \boldsymbol{\sigma}_p \cdot \boldsymbol{\Phi}_k) \cdot PSF_{ij} + \boldsymbol{\beta}$$

Application: given a pulse profile $\boldsymbol{\Phi}_k$, it separates the unpulsed counts $\boldsymbol{\sigma}_u$ from the pulsed ones $\boldsymbol{\sigma}_p$

Makes possible 3D spectra

Cyclotron Absorption Lines

$$B = \frac{E_{\rm cyc}^{\rm obs}}{11.6 \text{ keV}} \frac{m}{m_e} \left(1 - \frac{2GM}{Rc^2} \right)^{-1/2} \times 10^{12} \text{ G}$$

 $B_e \approx 2.5 \times 10^{10} \, \mathrm{G}$

 $B_p \approx 5 \times 10^{13} \,\mathrm{G}$

 $B(r) = B_{\sup}(1 + 3\cos^2\theta_B)(R_*/r)^3$

PSR J1740+1000

Kargaltsev+ 2012, Science 337, 946

Polar Cap Luminosity

Millisecond Pulsar - BB

Millisecond Pulsar - ATM

Millisecond Pulsar - ATM

