COTS "Commercial" is not always advertising...

Monica Alderighi

Astro-Siesta, 30/01/2014

M. Alderigh, Astro-Siesta, 30/01/2014

1

COTS - Definition

- By Commercial Off-The-Shelf (COTS) is meant software or hardware products that are ready-made and available for sale or license
 - Manufacturer's standard products
 - Usually fast procurement

Additional definition for COTS

- Components with no prerequisite specifications with respect to the space environment (thermal, mechanical, radiation aspects)
- Components at lower cost than similar rad-hard parts

Advantages of using COTS

- High computing performance, not available for space processors
- Large availability of support tools for SW development and tests
- Large availability of existing software libraries
- Compatibility with ground processors allows developing of low cost test environments and simulators

Concerns about using COTS

- Radiation effects
 - Radiation Tests results are often missing
- Variability
 - Process is likely to be modified at anytime, tracing the origin and manufacturing process is difficult
 - COTS devices has a variability from one manufacturer to another and for a single manufacturer
- Obsolescence
 - COTS suppliers constantly introduce new products, while
 - hardened OBC have a long development time and a long life cycle
- Reliability
 - Reliability data are often missing or incomplete
- No access to the internal design
 - Difficulty to fully characterize the design and to develop models

ESA initiative for using COTS in space

- **Project**: COTS based Computer for On Board systems (CoCs)
- Objective: Study and design on-board computing systems based on "Commercial Off-The-Shelf" components

• Activity phase:

- 1. Design phase: defining the COTS computers as well as the methods for their manufacturing and qualification
- 2. Implementation and qualification phase: manufacturing of breadboards that target real missions
- 3 H/W Contracts
 - High Availability Computer EADS-Astrium Germany
 - High Reliability Computer Thales Alenia Space Italia
 - High Performance Computer EADS-Astrium France

Hi Rel CoCs Project Team

Prime Contractor ThalesAlenia

Sub-Contractors:

- project management and reporting,
- overall technical coordination
- interface with ESA and the Working Group
- Overall HiRel CoCs detailed specification
- FDIR strategy
- final technology trade-offs and selection
- definition of the CoCs evaluation methods and strategy.

Dept. of Automation and Computer Engineering of Politecnico di Torino (PoliTo):

- Survey of commercial off the shelf (COTS) processors
- Developing the CoC simulator
- Benchmark SW development

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

inmeccanica Company Space

Institute IASF Milano/INAF

- Survey of Reprogrammable Logic Devices
- Hi-Rel CoCs Evaluation Environment & EGSE Definition
- EGSE Development

Department of Electronic Engineering & ULISSE Consortium of the University of Rome "Tor Vergata":

- Survey of candidate Memory Devices
- DDR-II ECC Development

SME company :

- Modeling of Hi-Rel CoCs Building Blocks
- Board and Basic SW Development

M. Alderighi, Astro-Siesta, 30/01/2014

Hi Rel CoCs – Step 2 Objective

- Step 2 started in September 2011
- Activities are focusing on PM development and validation:
 - PM Board and FPGAs detailed design
 - Basic SW
 - PM Breadboard Manufacturing
 - PM Board EGSE development
 - PM Breadboard Verification Test
 - Development of benchmark Software
 - PM Performances evaluation and Validation (including Faults injection)
- Planned Step 2 activities completion by 4Q2014

PM Module - Major Requisites

- Outage duration in case of transient failure lower than 10 s
- Mean time between these outages higher than 30 days
- Targeted PM performance: 400 MIPS
- 3 high speed buses (200 Mb/s each), 3 low speed buses (1 Mb/s each), 100 low speed I/O (few kb/s each).
- Lifetime of 15 years
- Reliability better than 0.95 over 15 years

PM Module – Features

- CPU based on PPC 7448
- Working memory based on DDR-II
- Use High Speed FPGA (Virtex4) as Bridge
- Virtex4 scrubbing managed by external device
- Combination of SW and HW FDIR strategies
- HW Features specifically supporting SW FDIR
 - Selective Memory Protection
 - Individual Memory power switching to cope with SEFI
 - Smart watch-dog (supervisor) to check program flow
- ESA Standard data Interfaces
 - SpaceWire
 - High Speed Serial links

SBC PowerPC-7448 product definition

- It is the new TAS High Performance Processing Module, based on PowerPC 7448 (2300DMIPS@1GHz core clock), offering performances not available from other European Manufacturers.
- Development has been started in the frame of ESA COTS Based Computer and ARPA ASI Technology program.
- Space Qualified version development is going-on
- Envisageable Applications:
 - Optical Observation payloads
 - Radar Payload
 - Scientific Payloads
 - Planetary exploration Computers
 - Any application requiring high Processing performances

SBC PowerPC-7448

OPEN

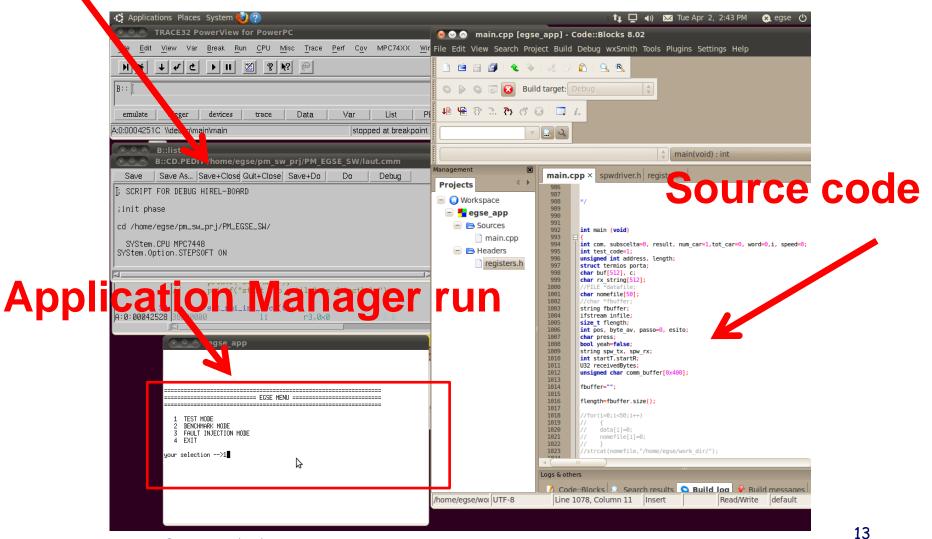
EGSE HW/SW

Powerful workstation PC, including

- 6 SpaceWire ports
- 1 Lauterbach Debugger tool
- XILINX JTAG probe
- ACTEL JTAG probe
- 1 pci Digital I/O board
- 2 Gigabit Ethernet boards
- Linux Ubuntu 10.4 OS
- C++ Programming Language
- Code Blocks 8.02 Development Environment

EGSE Functions

• PM Board testing/verification


- allows testing specific resources of the PM board, such as memory, communications links, and data interfaces
- Benchmarking
 - allows testing PM board performances when selected benchmarks are applied

Fault injection

 allows testing the response of the PM board in presence of SEU like faults

EGSE Operation

Debugger environment

M. Alderighi, Astro-Siesta, 30/01/2014

EGSE Fault Injection

- Evaluation of Fault PM module performance in presence of faults
 - Fault tolerance ability
 - Fault latency
 - Task duration
- Targets
 - Bridge FPGA
 - DDR II Volatile Memory
 - Non Volatile Flash Memory
 - PPC 7448 registers and L1/L2 memory
- Methods
 - Lauterbach Debugger tool
 - Device reconfiguration (Bridge FPGA)
 - Suitable software instrumentation

Thank you!!!!

M. Alderighi, Astro-Siesta, 30/01/2014