The thermal excess in the X-ray spectra of accreting binary pulsars

Nicola La Palombara

Overview

- Summary on High Mass X-Ray Binaries
- HMXRBs in the Galaxy and in the Magellanic Clouds
- XMM observations of 4U 0352+309 and RX J0146.9+6121
- Thermal excess in X-ray Binary Pulsars
- Origin of the thermal component
- Future work

High Mass X-Ray Binaries

Components:

- a compact accreting stellar object (NS or BH)
- a high mass donor star (OB supergiant or Be)

X-ray variability:

- persistent bright sources ($L_X > 10^{36} \text{ erg s}^{-1}$)
- transient sources: quiescent phases ($L_X < 10^{35}$ erg s⁻¹) interrupted by intense ($L_X > 10^{36}$ erg s⁻¹) outbursts
- persistent low-luminosity sources ($L_X \sim 10^{34-35} \text{ erg s}^{-1}$)

Several HMXRBs show pulsed emission, with P = 0.03-10000 s

Be X-Ray Binaries

Dominant population of HMXRBs in the Milky Way and in the Magellanic Clouds

Elliptical orbits with eccentricities e = 0.1-0.9 and $P_{orb} = 17-263$ d

Optical component not evolved (luminosity class III-V) => smaller than its Roche lobe

Be star surrounded by an extended circumstellar envelope of ionized gas (*decretion disc*), which disperses and refills on time scales ~ years and is truncated by the orbiting NS (relation $H_{\alpha} - P_{orb}$)

- emission lines and IR excess compared to normal B stars
- rotationally dominated disc; fast radiative wind in the polar regions and slow high density outflow in the equatorial regions

Typical Be X-Ray Binaries....

Transient nature of the X-ray emission controlled by the <u>centrifugal</u> <u>gate</u> mechanism (operated both by the periastron passages and by the dynamical evolution of the decretion disc)

Two types of outbursting activity:

- Type I: periodic outbursts due to periastron transit of the NS; short duration (0.2-0.3 P_{orb}); peak luminosities $L_X \sim 10^{37}$ erg s⁻¹
- Type II: aperiodic outburst due to decretion disc instability; long duration (up to several P_{orb}); peak luminosities $L_X \sim 10^{38}$ erg s⁻¹ ($\sim L_{EDD}$); possible formation of an accretion disc (pulsar spin-up)

Hard spectrum (kT>15 keV, E_{cut} =10-20 keV) => <u>hard X-ray transients</u>

...and persistent Be X-Ray Binaries

Classification by Reig & Roche (1999):

- persistent low luminosity ($L_X \sim 10^{34-35} \text{ erg s}^{-1}$) with small fluctuations
- no outbursts
- long pulse periods ($P_{spin} > 200 \text{ s}$)
- low cut-off energy (~4 keV instead of 10-20 keV)
- absence or very weak Iron line at 6.4 keV
- P_{spin} ~ P_{orb}² (Corbet 1986) => large orbits (P_{orb} > 100 d) => accretion from low density regions
- no outbursts => low eccentricity

no tidal circularisation => primordial low eccentricity

low kick velocity at birth for the NS

Several HMXRBs discovered in the latest years in the Magellanic Clouds: 92 in the SMC and 36 in the LMC (Liu et al., 2005)

- small angular size
- close and known distance
- low absorption due to high Galactic latitude

Overabundant population of HMXRBs in the SMC relative to the MW

Galaxy		HMXBs
	Total	Pulsar
SMC	92	47
SMC*100	9200	4700
LMC	36	7
LMC*10	360	70
Galaxy	108	57

Unusually high concentration of BeXRB systems in the SMC (> 90 % of all the HMXRBs, compared to 60-70 % in MW and LMC), in a region of recent (< 30 My) star formation

XMM observation of two persistent BeXBRs

X-ray source	4U 0352+309	RX J0146.9+6121
Luminosity (2-10 keV)	$\sim 10^{35} \text{ erg s}^{-1}$	$\sim 10^{34} \text{ erg s}^{-1}$
Pulse period	$839.3 \pm 0.3 \ s$	1396.1 ± 0.2 s
Orbital period	250.3 d	?
Orbital eccentricity	0.11	?
Optical counterpart	X Persei	LS I +61º 235
Spectral type	O9.5 IIIe	B0 IIIe
Source distance	0.95 kpc	~ 2.5 kpc

4U 0352+309

RX J0146.9+6121

=> the pulse profile is energy dependent
=> the pulse shape is not simply sinusoidal

Timing analysis - 4U 0352+309

Timing analysis - 4U 0352+309

RXTE (Coburn et al., 1998) XMM (La Palombara & Mereghetti, 2007)

<u>The opposite behaviour of the two HRs</u> <u>reveals a complex spectral evolution</u>

Timing analysis - RX J0146.9+6121

RXTE (Mereghetti et al., 2000)

XMM (La Palombara & Mereghetti, 2006)

Phase

detection of pulsed emission also below 2 keV

1.5

Phase-averaged spectra - I

=> a single power-law component does not describe the observed spectra

- => the addition of a black-body component improves the fit quality
- => no evidence of an Iron line between 6 and 7 keV

Phase-averaged spectra - II

X-ray source	4U 0352+309	RX J0146.9+6121
Photon index	1.48 ± 0.02	1.34 ± 0.05
Black-body temperature (keV)	1.42 ± 0.03	1.11 ± 0.06
Black-body radius (m)	361 ± 3	140 ± 15
Luminosity (0.3-10 keV, erg s ⁻¹) $\sim 1.4 \times 10^{35}$	$\sim 1.5 \times 10^{34}$
Flux PL (%)	~ 61	~ 76
Flux BB (%)	~ 39	~ 24
Upper Limit EQW Fe (keV)	~ 0.1	~ 0.15

Phase-averaged spectra - 4U 0352+309

Observation	XMM (2003)	RXTE (1998)
Photon index	1.48 ± 0.02	1.83 ± 0.03
Black-body temperature (keV)	1.42 ± 0.03	1.48 ± 0.02
Black-body radius (m)	361 ± 3	130 ± 30
Luminosity (2-10 keV, erg s ⁻¹)	~1x10 ³⁵	$\sim 2 \times 10^{34}$
Flux PL (%)	~ 56	~ 65
Flux BB (%)	~ 44	~ 35

<u>BB temperature and contribution to the total flux</u> <u>independent of the source luminosity</u>

Phase-resolved spectroscopy - I

spectral variability with the pulse phase

Phase-resolved spectroscopy - II

- N_H nearly constant along the pulse phase => interstellar extinction
- Γ variations only at the pulse minimum
- Significant variations of the BB Temperature and Radius
- Variations of the total flux, but ~ constant BB fraction along the pulse phase

Phase-resolved spectroscopy - III

4U 0352+309

forced common values for N_H , Γ and kT_{BB}

variations in the relative contribution of the PL and BB components

evidence that the BB component is really variable?

EPIC C

Phase-resolved spectroscopy - IV

4U 0352+309

a constant BB component is not rejected by the data

the spectral variability can be attributed to the PL component

Luminosity and pulse period history 4U 0352+309

the pulsar spin-down has proceeded also during the luminosity increase

no evidence of accretion disc

Luminosity and pulse period history

RX J0146.9+6121

in spite of the source decreasing luminosity, the pulsar is still in a spin-up phase

momentum transfer to the NS even with low accretion rates

Common properties of 4U 0352+309 and RX J0146.9+6121

Persistent sources Low luminosity ($L_X < 10^{36} \text{ erg s}^{-1}$) Long pulse period (P > 100 s)

Data excess over the main PL component of BB type High BB temperature (kT > 1 keV) Small emission area (R < 0.5 km) ~ 30 % of the total flux due to the thermal component

X-ray Binary Pulsars with an observed data excess

La Palombara & Mereghetti, 2006

Source	Location	Distance (kpc)	Companion Star	P _{pulse} (s)	$(\text{ergs s}^{-1}, \text{keV})$	Flux (ergs cm ⁻² s ⁻¹)	$(10^{21} \text{ cm}^{-2})$	$L_{\rm SE}/L_{\rm X}$	SE model ^a	kT _{BB} (keV)	SE Pulses ^e
Her X–1 ¹	Galaxy	~5	A7 V	1.24	$1.0 \times 10^{37} (0.3-10)$	3.3×10^{-9}	0.05	0.04-0.10	BB, BB+LE	0.09-0.12	Yes
SMC X-1 ²	SMC	65	B0 lb	0.7	$2.4 imes 10^{38} (0.7-10)$	4.7×10^{-10}	2-5	0.036	BB, TB, SPL	0.15-0.18	Yes
LMC X-4 ³	LMC	50	O7 III-O IV	13.5	$1.2 imes 10^{38}$ (0.7–10)	$4.0 imes 10^{-10}$	~ 0.5	0.064	BB, BB+TB, COM, SPL	0.15	Yes
XTE J0111.2-73174	SMC	65	B1 IVe	30.95	$1.8 imes 10^{38}$ (0.7–10)	$3.6 imes10^{-10}$	1.8	~ 0.10	SPL	54625	Yes
RX J0059.2-71385	SMC	65	B1 IIIe	2.76	$2.6 imes 10^{38}$ (0.1–10)	$5.1 imes 10^{-10}$	0.42-0.50	0.31	MEK, SPL	*****	No
4U 1626-67 ⁶	Galaxy	?	Low-mass	7.7	$2.6 \times 10^{34} D_{\rm kpc}^2$ (0.5-10)	2.2×10^{-10}	0.6	0.10	BB	0.34	No
Cen X-3 ⁷	Galaxy	~ 8	06–08 II	4.8	2.4×10^{38} (0.1–10)	3.2×10^{-8}	19.5	~ 0.7	BB	0.11	Yes
Vela X-18	Galaxy	1.9	B0.5 Ib	283	2.2×10^{36} (2–10)	5.1×10^{-9}	4.2	~ 0.01	TB		No
X Per ⁹	Galaxy	0.95	O9.5pe	837	$1.8 imes 10^{34}$ (0.3–10)	1.7×10^{-10}	1.5	0.24	BB	1.45	?
EXO 053109-6609.210	LMC	50	B0.7 Ve	13.7	$4.6 imes 10^{37}$ (0.2–10)	$1.5 imes10^{-10}$	6.9	?	MEK+PL	111	Yes
A 0538-66 ¹¹	LMC	50	B2 IIIe	0.069	4.0×10^{37} (0.1–2.4)	$1.3 imes 10^{-10}$	0.8	?	BB, TB	~ 0.2	?
RX J0047.3-731212	SMC	65	B2e	263	$1.5, 2 \times 10^{36} (0.7 - 10)$	$3.0, 4.0 \times 10^{-12}$	0.96,3.4	0.03-0.09,0.68	BB	0.6, 2.2	Yes
RX J0101.3-721113	SMC	65	Be	452	$1.6 imes 10^{35}$ (0.3–10)	3.2×10^{-13}	0.6	?	MEK	10.00	?
RX J0103.6-720114	SMC	65	O5 Ve	1323	$0.8 - 7.5 \times 10^{36}$ (0.2–10)	$1.6 - 14.8 \times 10^{-12}$	1.9	?	MEK	· · · · ·	No
AX J0049.5-7323 ¹⁵	SMC	65	B2 Ve	751	$7-9 imes 10^{35}$ (0.2–10)	$1.4 - 1.8 imes 10^{-12}$	3.6	?	?		Yes
AX J0058-720 ¹³	SMC	65	Be	281	$1.2 imes 10^{35}$ (0.3–10)	2.4×10^{-13}	0.6	2	2		Yes
AX J0103-72213	SMC	65	B01V	342	$1.8 imes 10^{35}$ (0.3–10)	3.6×10^{-13}	0.6	?	MEK	*****	?
3A 0535+26216	Galaxy	2.0	09.7 IIIe	103.4	$3.9 imes 10^{33}$ (2–10)	8.2×10^{-12}	6.0	0.35	BB	1.33	?
RX J0146.9+6121	Galaxy	2.5	B0 IIIe	1395	$1.5 imes 10^{34}$ (0.3–10)	2.0×10^{-11}	5.1	0.25	BB	1.11	?

^a References: (1) dal Fiume et al. (1998), Endo et al. (2000), Ramsay et al. (2002); (2) Woo et al. (1995), Paul et al. (2002); (3) Woo et al. (1996), La Barbera et al. (2001), Naik & Paul (2004); (4) Yokogawa et al. (2000b); (5) Kohno et al. (2000); (6) Schulz et al. (2001); (7) Burderi et al. (2000); (8) Haberl (1994), Orlandini et al. (1998), Kreykenbohm et al. (2002); (9) di Salvo et al. (1998), Coburn et al. (2001); (10) Haberl et al. (2003); (11) Mavromatakis & Haberl (1993); (12) The two set of values are base on Ueno et al. (2004) and Majid et al. (2004), respectively; (13) Sasaki et al. (2003); (14)Sasaki et al. (2003), Haberl & Pietsch (2005); (15) Yokogawa et al. (2000a), Haberl & Pietsch (2004); (16) Mukherjee & Paul (2005).

^b For each source the reference energy range is also reported.

^c The reported values refer only to the interstellar absorption, not to the source intrinsic absorption.

d Spectral models used for the soft excess are: BB = blackbody; TB = thermal bremsstrahlung; SPL = soft power-law or broken power-law; MEK = MEKAL thin thermal model; COM = Comptonization model; LE = broad low-energy line emission. Commas indicate separate fits, plus signs indicate fits with two components.

^e Pulsation of the emission component that traces the soft excess.

the soft/thermal component can be a common feature intrinsic to accreting X-ray pulsars

Her X-1

ASCA - Endo et al., 2000

$$kT_{BB} = 0.16 \text{ keV}$$

 $L_X(0.1-10) = 1.8 \times 10^{37} \text{ erg s}^{-1}$

Chandra - Jimenez-Garate et al., 2005 PL+BB, $kT_{BB} = 0.18 \text{ keV}$ $L_X(0.1-10) = 2.5 \text{ x } 10^{35} \text{ erg s}^{-1}$

4U 1626-67

 $kT_{BB} = 0.29 \text{ keV}, L_X(0.1-200) = 7.7 \text{ x } 10^{34} d_{kpc}^2 \text{ erg s}^{-1}$

Krauss et al., 2007: PL+BB, $kT_{BB} = 0.25 \text{ keV}$

LMC X-4

GINGA+ROSAT - Woo et al., 1996: PL+BB+TB $kT_{BB} = 0.03 \text{ keV}, kT_{TB} = 0.35 \text{ keV}$ $L_X(2-10) = 9.3 \times 10^{37} \text{ erg s}^{-1}$

SAX - La Barbera et al., 2001: PL+BB+BR $kT_{BB} = 0.06 \text{ keV}, kT_{TB} = 0.8 \text{ keV}$ $L_X(0.1-10) = 2 \times 10^{38} \text{ erg s}^{-1}$

SMC X-1

ASCA - Paul et al., 2002: PL+BB $kT_{BB} = 0.18 \text{ keV}$ $L_X(0.1-10) = 2.9 \times 10^{38} \text{ erg s}^{-1}$

XMM - Hickox et al., 2005: PL+BB $kT_{BB} = 0.17 \text{ keV}$ $L_X(0.1-10) = 3.8 \times 10^{38} \text{ erg s}^{-1}$

Cen X-3

EXO 053109-6609.2

Cost Alland

RX J0059.2-7138

AX J0058-720

AX J0103-722

PL $L_X(0.1-10) = 1.2 \times 10^{35} \text{ erg s}^{-1}$ PL+MEK $kT_{MEK} = 0.27 \text{ keV}$ $L_X(0.1-10) = 3.5 \text{ x } 10^{35} \text{ erg s}^{-1}$

XMM - Sasaki et al., 2003

RX J0101.3-7211

RX J0103.6-7201

XMM - Sasaki et al., 2003: **PL+MEKAL** $kT_{MEK} = 0.2 \text{ keV}$ $L_X(0.1-10) = 1.4 \times 10^{35} \text{ erg s}^{-1}$ XMM - Haberl et al., 2005: **PL+MEKAL** $kT_{MEK} = 0.15 \text{ keV}$ $L_X(0.1-10) = 1.1 \times 10^{36} \text{ erg s}^{-1}$

10

EM dependence on total luminosity

Haberl et al., 2005

The SFXT IGR J11215 5952

Spectrum	${{ m N}_{ m H}} ({10^{22}}~{ m cm}^{-2})$	Г	E _c (keV)	kТ _{ьь} (keV)	R _{bb} (km)	Flux $(10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1})$	red. χ^2 (dof)
Cut-off powerlaw							
A1	0.62 ± 0.04	0.60 ± 0.11	11 +4	33 <u>–</u>	<u>944</u> 0	6.7	1.29 (532)
A2	0.56 ± 0.04	0.25 ± 0.10	7.3 ± 1.0	8 . –	1 700 1	9.9	1.18 (589)
B1	0.71 ± 0.11	0.0 ± 0.23	4.1 + 1.1	70	<u>1946 (</u>)	0.5	0.99 (427)
B2	0.79 ± 0.07	0.0 ± 0.15	4.8 + 0.8 - 0.6	80 	3	1.3	1.08 (574)
Powerlaw plus blackbody							
A1	0.73 + 0.07	1.23 + 0.22		2.0 + 0.2	0.24 ±0.03	6.7	1.29 (531)
A2	0.64 ± 0.05	0.89 +0.11	<u>77</u> 0	1.7 ± 0.2	0.37 ± 0.05	10	1.19 (588)
B1	$0.8^{+0.1}_{-0.2}$	$0.96 + 0.21 \\ - 0.39$)	1.4 ± 0.2	0.14 + 0.06	0.5	1.0 (426)
B2	$0.65 + 0.11 \\ -0.07$	0.4 ± 0.3	276	1.3 ± 0.1	0.27 ± 0.04	1.3	0.99 (573)

Sidoli et al., 2007

Possible emission processes for the data excess - I

Hickox et al., 2004

Possible emission processes for the data excess - II

Hickox et al., 2004: the origin of the data excess depends on the luminosity of the source

 $L_{\rm X} \ge 10^{38} \text{ erg s}^{-1}$:

reprocessing of hard X-rays by the optically thick accretion material

emission by photoionized or collisionally heated gas or thermal emission from the neutron star surface

 $L_x \sim 10^{37} \text{ erg s}^{-1}$:

 $L_x \le 10^{36} \text{ erg s}^{-1}$:

either or both the above processes are possible

SMC X-1, LMC X-4, Cen X-3, RX J0059.2-7138, XTE J0111.2-7317

Vela X-1, RX J0101.3-7211, AX J0103-722

4U 1626-67, X Per

Her X-1, EXO 053109-6609.2, A0538-66

Possible emission processes for the data excess - III

Becker & Wolff, 2005: bulk Comptonization in a radiation dominated accretion column

 $v_{bulk} >> v_{thermal}$ bulk Comptonization dominates over thermal Comptonization $P_{radiation} >> P_{gas}$

radiation dominated shock

- PL: upscattering of lowenergy photons in the radiative shock and diffusion through the column walls
- BB: escape of low-energy photons without upscattering

Origin of the thermal excess in 4U 0352+309 and RX J0146.9+6121

- $L_x \le 10^{36} \text{ erg s}^{-1}$
- the excess can be described by a black-body model

- ⇒ no reprocessing by optically thick accreting material
- ⇒ no emission by photoionized or collisionally heated gas
- the black-body temperature is high (> 1 keV) AND
- the emission radius is small (< 0.5 km)

⇒ thermal emission from the neutron star polar caps?

Assuming $M_{NS} = 1.4 M_{SUN}$, $R_{NS} = 10^6$ cm and $B_{NS} = 10^{12}$ G, we can estimate:

- the accretion rate:
- the magnetic dipole momentum:
- the magnetospheric radius:
- the accretion column radius:

 $dM/dt = LR_{NS} / (GM_{NS})$

- $\mu = B_{\rm NS} R_{\rm NS}^3 / 2$
- $R_m = \{\mu^4 / [2GM(dM/dt)^2]\}^{1/7}$
- $R_{\rm col} \sim R_{\rm NS} (R_{\rm NS}/R_{\rm m})^{1/2}$

Origin of the thermal excess in 4U 0352+309 and RX J0146.9+6121

X-ray source	4U 0352+309	RX J0146.9+6121
Luminosity (2-10 keV)	$\sim 10^{35} {\rm erg \ s^{-1}}$	~ $10^{34} \text{ erg s}^{-1}$
Accretion rate	$\sim 5 \ge 10^{14} \text{ g s}^{-1}$	~ 5 x 10^{13} g s ⁻¹
Magnetospheric radius	~ 9.5 x 10 ⁸ cm	~ 1.8 x 10 ⁹ cm
Polar cap radius	~ 330 m	~ 230 m
Black-body radius	$361 \pm 3 \text{ m}$	$140 \pm 15 \text{ m}$

the BB size is in agreement with the polar-cap origin of the thermal excess!

BUT

there is no clear evidence of the BB variability along the pulse phase.....

Soft excess variability: other results...

LMC X-4: free parameters

Woo et al, 1996

Endo et al., 2000

Soft excess variability: other results...

Observation of the transient Be pulsar 3A 0535+262 in quiescence

SAX, Mukherjee & Paul (2005)

Is this spectral feature a COMMON property of the low-luminosity, long-period Be pulsars?

Future perspectives

4U 0352+309 and RX J0146.9+6121 are at the low L - long P end of the accreting pulsars

...otherwise, other types of "winds" are waiting to be studied:

THANKS!

P_{spin} - **P**_{orb} relation

