

Superfluidity in the crust of Neutron Stars: why should we care?

Pierre Pizzochero

The most exotic laboratory in the Universe...

... can only be observed from the outside!

Understanding superfluidity in the crust is crucial because:

1) Crust superfluidity directly determines how properties of the exotic inside are observed from the outside (cooling of Neutron Stars)

2) Crust superfluidity directly affects additional observables, thus further constraining the structure of Neutron Stars (fast cooling & Pulsar glitches)

What can be observed

Surface temperatures (isolated NS)

Glitches in rotational frequency (Pulsars)

Inside a neutron star

Neutron star structure

neutron-rich nuclei + sub-nuclear neutron matter

Crust properties

- thermal \rightarrow specific heat, emissivity
- transport \rightarrow thermal & electric conductivity, viscosity
- nuclear \rightarrow equilibrium nuclides, pairing
- mechanical \rightarrow elasticity, superfluid motion

 $\Downarrow \hspace{0.1 cm} \Downarrow \hspace{0.1 cm} \Downarrow$

nuclear core \Rightarrow crust \Rightarrow observable surface

Superfluidity in Neutron Stars

→ Inner crust (~ 10^{11} g/cm³ < ρ < ~ 10^{14} g/cm³)

gas of unbound superfluid neutrons (${}^{1}S_{0}$ pairing) $\rightarrow n_{G}$

lattice of neutron-rich nuclei (Wigner-Seitz cells) $\rightarrow R_{N}, R_{WS}$

ρ_B	1.5×10^{12}	$9.6 imes 10^{12}$	3.4×10^{13}	7.8×10^{13}	1.3×10^{14}
$n_{_{G}}$	4.8×10^{-4}	4.7×10^{-3}	1.8×10^{-2}	4.4×10^{-2}	$7.4 imes10^{-2}$
R_{ws}	44.0	35.5	27.0	19.4	13.77
R_{N}	6.0	6.7	7.3	6.7	5.2
a	0.77	0.83	0.94	1.12	1.25
Ν	280	1050	1750	1460	950
Ζ	40	50	50	40	32
N_{bound}	110	110	110	70	40

Cooling scenarios

Standard cooling of core

modified URCA process ($\Delta t_{o} \approx 1 \text{ yr}$)

nucleon-nucleon bremsstrahlung ($\Delta t_{o} \approx 40 \text{ yr}$)

∜

low central density \rightarrow low mass NS with stiff EOS

Rapid cooling of core

direct URCA process ($\Delta t_9 \approx 1 \text{ min}$)

exotic β -decays (deconfined quarks, hyperons, meson condensates, $\Delta t_{g} \approx 1 hr$)

∜

high central density

Crust superfluidity and surface temperature The program: cooling as a probe of NS structure \parallel RX J0622-45 8.4 PSR 0056+14 8.2 $\lg T_s (K)$ Geminga Grant 1055-52 C J1858-3754 -395 Tele 466 4 ž 5.8 5.6 2 5 ₿ э lg t (yrs)

The *problem* to solve: superfluidity in the crust ↓

Rapid cooling

Temperature evolution

Core temperature (internal properties)

Surface temperature (observed)

- I. Core relaxation epoch
- II. Neutrino cooling epoch
- III. Photon cooling epoch

crust properties \Rightarrow duration of epoch I (plateau)

$\Downarrow \Downarrow$

if rapid cooling \Rightarrow observe \mathbf{t}_{w}

Pulsar glitches

🔸 Pulsar slow-down

emission of e.m. and gravitational waves $\rightarrow \dot{E}_{em} > 0$ isolated neutron star $\rightarrow \dot{E}_{tot} = \dot{E}_{em} + \dot{K}_{rot} = 0$ $\downarrow \downarrow$ decrease of rotational frequency $\rightarrow \dot{\Omega} < 0$

Rotational glitches

Vortex theory for glitches

 $\vec{\nabla} \times (\vec{\Omega} \times \vec{r}) = 2\vec{\Omega} \neq 0 \rightarrow \text{no rigid rotations } \vec{\Omega}$

array of parallel vortices (if $\Omega >> \Omega_{\rm cr}$) $\rightarrow \langle \vec{\rm v}_{\rm s} \rangle = \sum_i \vec{\rm v}_{{\rm s}i}$

superfluid angular momentum quantized in vortices

Vortex pinning and Magnus force

if superfluid vortices are pinned $\rightarrow \dot{n}_v = 0 \rightarrow \dot{\Omega}_s = 0$ but slow-down of normal component $\rightarrow \dot{\Omega}_n < 0$ $\downarrow \downarrow$ rotational lag of components $\rightarrow \Delta \Omega = \Omega_s - \Omega_n > 0$ outward drag force on vortex $\rightarrow f_{mag} \propto \Delta \Omega$

Vortex un-pinning and glitches

since $\Delta \dot{\Omega} > 0 \rightarrow f_{mag}$ increases with time pinning energy \rightarrow maximum pinning force f_{pin} when $f_{mag} \ge f_{pin} \rightarrow$ unpinning of many vortices $\downarrow \downarrow$ transfer of angular momentum to the star surface $\downarrow \downarrow \downarrow$

normal component spin-up \Rightarrow pulsar glitch

